首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the changes in the fatty acid profiles of red blood cell membrane phospholipids in 47 infants who were exclusively fed human milk from birth to 1 month of life. Twenty blood samples were obtained from cord, 15 at 7 days and 12 at 30 days after birth. Membrane phospholipids were obtained from erythrocyte ghosts by thin-layer chromatography and fatty acid composition was determined by gas liquid chromatography. Phosphatidylcholine showed the most important changes during early life; stearic, w6 eicosatrienoic and arachidonic acids decreased whereas oleic and linoleic acids increased. In phosphatidylethanolamine, palmitic and stearic acid declined and oleic, linoleic and docosahexenoic acids increased with advancing age. Small changes were noted for individual fatty acids in phosphatidylserine. In sphingomyelin stearic acid increased from birth to 1 month and linoleic, arachidonic and nervonic acids decreased. Total polyunsaturated fatty acids of the w6 series greater than 18 carbon atoms increased with advancing age in phosphatidylethanolamine and decreased in choline and serine phosphoglycerides and in sphingomyelin. Long chain fatty acids derived from linoleic acid decreased in phosphatidylcholine but increased in ethanolamine and serine phosphoglycerides. The different behavior in the changes observed in fatty acid patterns for each erythrocyte membrane phospholipid may be a consequence of its different location in the cell membrane bilayer and specific exchange with plasma lipid fractions.  相似文献   

2.
1. Analyses of platelet lipid composition were carried out on material pooled from male and female miniature pigs. 2. The cholesterol/phospholipid molar ratio was 0.6. 3. Phosphatidylcholine represents the major class of phospholipids (47%) and phosphatidylinositol the minor (2%). 4. The main fatty acids of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and sphingomyelin were: palmitic, stearic, oleic, linoleic and arachidonic acids. 5. The ratios of saturated to unsaturated fatty acids were: sphingomyelin, 1.7; phosphatidylcholine, 1.2; phosphatidylserine, 0.9; phosphatidylethanolamine and phosphatidylinositol, 0.6. 6. Our results suggests that human and miniature pig platelet lipids bear several characteristics in common. This fact would allow miniature pig to be used as a new experimental model.  相似文献   

3.
Development and aging processes in mammals are associated with changes in several physiological parameters. The aim of the present study was to investigate the changes in erythrocyte lipid composition during sheep development. In all the age groups studied, cholesterol/phospholipid ratios remained constant, at close to unity, while phospholipid patterns (sphingomyelin: 45-51%, phosphatidylethanolamine: 26-33%, phosphatidylserine: 13-19% and phosphatidylcholine: less than 2%) changed during development, with a statistically significant decrease (P less than 0.01) in phosphatidylserine and an increase in sphingomyelin content. These data suggest an increase in the rigidity of the erythrocyte lipid bilayer in adult sheep when compared with 1-month-old animals due to a decrease in the phosphatidylserine/sphingomyelin ratio. Fatty acid profiles consistently showed 5 main acids: oleic (52-54%), stearic (17-18%), linoleic (9-15%), palmitic (8.5-11%) and arachidonic acid (2-3%), mainly with significant variations (P less than 0.01) in palmitic and linoleic acid contents, respectively reaching the highest and lowest percentages in the youngest sheep. However, the developmental process seems to have no influence on the aminophospholipid topology of erythrocytes. This study suggests that the animals' developmental process has a marked effect on the lipid composition of erythrocyte membranes, which could affect cell functions.  相似文献   

4.
The aim of this work was to study the composition of long chain fatty acids and the n-6 and n-3 fatty acid ratios in aged and young Wistar rats in brain and hippocampus, related to relative cognitive deficits. The aged animals showed cognitive deficits during acquisition of a memory task (delayed alternation). In brain, results showed a decrease in palmitoleic and palmitic acid percentages in all the studied phospholipid classes and in the phosphatidylserine and phosphatidylcholine classes, respectively, in old rats, compared to the young ones. There was also an increase in oleic and stearic acid amounts in the sphingomyelin, phosphatidylserine and phosphatidylinositol classes and in the phosphatidylserine and phosphatidylcholine classes, respectively. Arachidonic acid amount was decreased in old rats, compared to the young ones, in the phosphatidylserine and phosphatidylinositol classes. Total n-6 and n-3 fatty acid amounts were both decreased in all phospholipid classes, with a stable n-6/n-3 ratio. Our results confirm that arachidonic acid concentration is decreased in aged rats and that this reduction, more significant in phosphatidylserine and phosphatidylinositol classes, should be related to the fact that low concentrations of arachidonic acid are observed during activation of glutamate receptor.  相似文献   

5.
The utilization of n-hexadecane by Candida lipolytica (stain 10) was studied with respect to the lipid content, phospholipid and fatty acid profiles resulting at various growth times. Thin layer chromatography of the lipid extracts showed quantitative changes in the different lipid classes. The phospholipid fraction obtained at each growth time was separated into 8 classes: lysophosphatidylcholine, sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, glycophospholipid, phosphatidylglycerol, cardiolopin, and phosphatidic acid. Differences in the percentage fatty acid composition of the lipid extracts were observed at various stages of growth. The cellular fatty acids included palmitic, palmitoleic (35-52%), stearic, oleic, linoleic (26-39%), and pentadecanoic (2-12%) as major components. This indicates that fatty acid(s) of the same length as that of the substrate was the most abundant component, thus showing intact incorporation mechaism. Fatty acids having longer chain lengths were also formed in substantial amounts indicating C2 addition and beta-oxidation of the fatty acids formed in the yeast.  相似文献   

6.
The light and heavy plasma membranes (PM) isolated from lactating bovine mammary glands contained 38~43% lipid of which 41~44% was phospholipid and 47~52% neutral lipid. The contents of phospholipid and neutral lipid were somewhat higher in the light PM than in the heavy PM. Cholesterol was contained 55 ~60% of neutral lipid and the ratio of cholesterol to phospholipid was 0.64 to 0.69. Phospholipid was composed of sphingomyelin (Sph) 29~38%, phosphatidylcholine (PC) 27~35%, phosphatidylethanolamine (PE) 16~20%, phosphatidylserine 10%, and phosphatidylinositol 6~7%. The content of Sph was higher in the heavy PM than in the light PM, while the values of PC and PE were opposite. The major fatty acids of lipid components were palmitic acid, stearic acid, and oleic acid and those of Sph were palmitic acid, stearic acid, C23:0 and 24:0. The fatty acid composition of individual lipid classes differed significantly from each other but were similar between the light and heavy PMs. Tetracosapentaenoic acid (C24:5) was the major fatty acid of the diacylglycerol fraction. The results indicated that the lipid composition, especially phospholipid components, of bovine mammary gland PMs was different from those of milk fat globule membranes which is derived from the PM of mammary secretory cells.  相似文献   

7.
Yolk platelets, the principal components of amphibian oocytes, have been generally considered as material reservoirs. Their biochemical composition and function during oogenesis and early development have not been fully elucidated. The aim of this study was to carry out a lipidic characterization of yolk platelets from full-grown Bufo arenarum oocytes. Ovarian oocytes were manually obtained and the subcellular fraction was isolated by centrifugation at low velocity. Lipids were separated by thin-layer chromatography. For compositional analysis, they were derived by methanolysis, being identified and quantified in a gas-liquid chromatograph. Phospholipid content indicates that phosphatidylcholine and phosphatidylethanolamine are the main phospholipids followed by phosphatidylinositol, sphingomyelin, phosphatidylserine, and phosphatidic acid. Phospholipidic profile is similar to that in whole oocytes except for the absence of diphosphatidylglycerol in yolk platelets. Oleic, palmitic, and linoleic acids are the main fatty acids in phosphatidylcholine, and oleic acid is the principal one in phosphatidylethanolamine. In phosphatidic acid, palmitic, estearic, palmitoleic, and oleic acids represent 68 mol% of the total acyl groups. Phosphatidylinositol, enriched in arachidonic acid, is the most unsaturated phospholipid while sphingomyelin shows the lowest unsaturation index. The acyl group distribution in triacylglycerols is similar when yolk platelets and whole oocytes are compared. Polar and neutral lipids of yolk platelets determine the lipidic profile of the whole oocyte. The presence of unusual fatty acids as 14:0, 15:0, 15:1, 17:0, and 17:1 in phospholipids and triacylglycerols may indicate an oxidation mechanism different from beta-oxidation in yolk platelets and/or a structural and functional relation with mitochondria. Given that yolk platelets in amphibian oocytes may act in a dynamic fashion in development, their role should be reconsidered.  相似文献   

8.
Perturbation of the fatty acid composition of human lymphocytes in vitro was investigated by addition of linoleic acid complexed to bovine serum albumin (BSA-LA) and by mitogenic stimulation with phytohaemagglutinin (PHA). BSA-LA resulted in a 45% increase in linoleic acid in phosphatidylethanolamine (PE) and over 100% in phosphatidylcholine (PC) in peripheral blood cells. Supplementation with BSA-LA in PHA-stimulated lymphocytes produced even greater changes: 100% increase in linoleic acid content for PE and over 300% for PC. There was a large decrease in oleic acid: 40% for PE and almost 100% in PC. Significant decreases in arachidonic acid occurred in both phospholipid fractions. PHA alone also altered membrane phospholipid fatty acid composition, with reductions in palmitic, stearic and linoleic acid for PE and increases in oleic acid and arachidonic acid (almost 100%). For PC, there were large decreases in stearic (40%), linoleic (30%) and arachidonic (40%) acids, together with an increase in oleic acid (65%). Cells supplemented with linoleic acid grown in the presence of PHA, compared with those grown in linoleic acid-supplemented medium alone, showed a 40% decrease in palmitic acid and a 55% increase in arachidonic acid in PE. For PC, there were large decreases in stearic acid (40%) and arachidonic acid (57%). Antibody-induced redistribution of surface molecules ('capping') was inhibited by some 14% after incubation with BSA-LA. However, no consistent alterations in PHA-induced cell proliferation were observed. These data suggest that profound alterations of membrane fatty acid composition occur spontaneously during the mitotic cycle, and may be further induced by experimental manipulation, without gross perturbation of cell function.  相似文献   

9.
The lipid composition and metabolism of isolated guinea pig megakaryocyte subgroups at various stages of maturation were investigated. Three groups were studied: 1) 67% of megakaryocytes in Group A were immature; 2) Group B was heterogeneous and contained both immature and mature subgroups of megakaryocytes; 3) 92% of megakaryocytes in Group C were mature. Lipid composition was determined by thin-layer chromatography, lipid-phosphorus, and gas-liquid chromatography. Cholesterol, ceramide, and de novo fatty acid synthesis were evaluated with [14C]acetate. [14C]Glycerol was used to assess de novo phospholipid synthesis. 14C-Labeled fatty acids were used to evaluate fatty acid uptake. The phospholipid and cholesterol content was found to be four times greater in mature megakaryocytes than that in immature megakaryocytes, which paralleled the protein content and volume of mature and immature cells. The cholesterol-phospholipid ratio was similar and there were no differences in the phospholipid species in the three groups. Phospholipid and cholesterol synthesis were established in immature megakaryocytes and persisted at about the same level in mature megakaryocytes. The uptake of arachidonic and palmitic acids also occurred primarily in immature cells, while the de novo synthesis of palmitic acid occurs predominantly in mature megakaryocytes. There was an inverse relationship between the uptake of exogenous palmitic acid and fatty acid synthesis, but the uptake of palmitic acid primarily inhibited fatty acid synthesis in mature megakaryocytes. There were differences in the acylation of phospholipid species with arachidonic acid in megakaryocytes at different stages of maturation since the acylation of phosphatidylcholine occurred primarily in immature megakaryocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The fatty acid composition of platelet membranes has been analysed in patients with thrombocytosis due to myeloproliferative disorders, who had not taken any drugs. A significant increase in palmitic and oleic acid, together with a decrease in stearic, linoleic and arachidonic acids was observed. The fatty acid pattern of platelet membranes was also analysed in patients during treatment with ASA (acetylsalicylic acid). ASA ingestion completely normalizes the platelet content of palmitic acid and partially that of stearic and arachidonic acid, whereas it has no effect on the level of linoleic acid and raises that of oleic acid. The altered pattern of fatty acids observed in patients may interfere with platelet function by decreasing membrane fluidity. Treatment of patients with ASA seems to act on platelet membranes by partially normalizing the fatty acid composition.  相似文献   

11.
The formation of radiolabelled oxygenated products of arachidonic acid in thrombin-stimulated, [3H]arachidonic acid-prelabelled human platelets is inhibited in a concentration-dependent manner by BW 755C (3-amino-1-[m-(trifluoromethyl)phenyl]-2-pyrazoline) or propyl gallate, both of which are combined inhibitors of lipoxygenase and cyclooxygenase. These compounds do not inhibit the thrombin-induced decrease in the radioactivity of platelet phospholipids but, instead, allow the accumulation of free radiolabelled arachidonic acid. Thrombin causes an increase in the levels of free, endogenous palmitic, stearic, oleic, linoleic and arachidonic acids of up to 10 nmol/10(9) platelets. In the presence of BW 755C or propyl gallate, further increases in the level of free arachidonic acid, of 20-50 nmol/10(9) platelets, occur. The enzyme inhibitors do not affect the accumulation of the other free fatty acids. The increase in arachidonic acid is optimal at 1 U/ml thrombin and 60% complete by 1 min at 37 degrees C. In the platelets from eight donors, the average increases in free fatty acids (in nmol/10(9) platelets) induced by 5 U/ml thrombin in 5 min at 37 degrees C in the presence of 100 microM BW 755C were 1 for linoleic acid, 3.6 for oleic acid, 4.5 for palmitic acid, 7.6 for stearic acid and 32.0 for arachidonic acid.  相似文献   

12.
Niger seeds (Guizotia abyssinica Cass.), which are of interest as a new source of vegetable oils, were subjected to Soxhlet-extraction with n-hexane and the extract analysed using a combination of CC, GC, TLC and normal-phase HPLC. The total lipid content was ca. 300 mg/g seed material, and the fatty acid profile showed a high content of linoleic acid (up to 63%) together with palmitic acid (17%), oleic acid (ca. 11%), and stearic acid (ca. 7%). CC separation over silica gel eluted with solvents of increasing polarity yielded 291 mg/g of neutral lipids, 5.76 mg/g of glycolipids, and 0.84 mg/g of phospholipids. GC analysis showed that the major fatty acid present in all lipid classes was linoleic acid together with minor amounts of palmitic, oleic and stearic acids. Polar lipid fractions, however, were characterised by higher levels of palmitic acid and a lower content of linoleic acid. Phospholipid classes separated by normal-phase HPLC consisted of phosphatidylcholine (ca. 49%), phosphatidylethanolamine (22%), phosphatidylinositol (14%), phosphatidylserine (ca. 8%), and minor amounts (2-3%) of phosphatidylglycerol and lysophosphatidylcholine.  相似文献   

13.
Macrophages are able to produce, export, and transfer fatty acids to lymphocytes in culture. The purpose of this study was to examine if labelled fatty acids could be transferred from macrophages to pancreatic islets in co-culture. We found that after 3 h of co-culture the transfer of fatty acids to pancreatic islets was: arachidonic > oleic > linoleic = palmitic. Substantial amounts of the transferred fatty acids were found in the phospholipid fraction; 87.6% for arachidonic, 59.9% for oleic, 53.1% for palmitic, and 36.9% for linoleic acids. The remaining radioactivity was distributed among the other lipid fractions analysed (namely polar lipids, cholesterol, fatty acids, triacylglycerol and cholesterol ester), varying with the fatty acid used. For linoleic acid, a significant proportion (63.1%) was almost equally distributed in these lipid fractions. Also, it was observed that transfer of fatty acids from macrophages to pancreatic islets is time-dependent up to 24 h, being constant and linear with time for palmitic acid and remaining constant after 12 h for oleic acid. These results lead us to postulate that in addition to the serum, circulating monocytes may also be a source of fatty acids to pancreatic islets, mainly arachidonic acid.  相似文献   

14.
The lipid fractions were studied in the testicular tissue of mature bulls, of the lowland black-and-white breed. It was found that the main component of neutral lipids was cholesterol (48%) followed by triglycerides (24%), cholesterol esters (16%) and free fatty acids (12%). In cholesterol esters the main component was palmitic acid (41%) followed by oleic acid (22%), stearic acid (14%) and linoleic acid (14%). In phospholipids the main fraction was composed of lecithins (48%) followed by phosphatidylethanolamine (20%) and phosphatidic acids and phosphatidylglycerol (13%). Palmitic acid was found mainly in the fractions of lecithins and sphingomyelins, stearic acid in fractions of phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol. Linoleic acid was found in the fractions of phosphatidylethanolamine, phosphatidylcholine and sphingomyelin. Arachidonic, docosatetraenoic and docosapentaenoic acids in the fractions of phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and phosphatidylcholine.  相似文献   

15.
The metabolism of the linolenic acid family (n-3) of fatty acids, e.g., linolenic, eicosapentaenoic, and docosahexaenoic acids, in cultured smooth muscle cells from rabbit aorta was compared to the metabolism of linoleic and arachidonic acids. There was a time-dependent uptake of these fatty acids into cells for 16 hr (arachidonic greater than docosahexaenoic, linoleic, eicosapentaenoic greater than linolenic), and the acids were incorporated mainly into phospholipids and triglycerides. Eicosapentaenoic and arachidonic acids were incorporated more into phosphatidylethanolamine and phosphatidylinositol plus phosphatidylserine and less into phosphatidylcholine than linolenic and linoleic acids. Docosahexaenoic acid was incorporated into phosphatidylethanolamine more than linolenic and linoleic acids and into phosphatidylinositol plus phosphatidylserine less than eicosapentaenoic and arachidonic acids. Added linolenic acid accumulated mainly in phosphatidylcholine and did not decrease the arachidonic acid content of any phospholipid subfraction. Elongation-desaturation metabolites of linoleic acid did not accumulate. Cells treated with eicosapentaenoic acid accumulated both eicosapentaenoic and docosapentaenoic acids mainly in phosphatidylethanolamine and the arachidonic acid content was decreased. Added docosahexaenoic acid accumulated mainly in phosphatidylethanolamine and decreased the content of both arachidonic and oleic acids. The following conclusions are drawn from these results. The three n-3 fatty acids are utilized differently in phospholipids. The arachidonic acid content of phospholipids is reduced by eicosapentaenoic and docosahexaenoic acids, but not by linolenic acid. Smooth muscle cells have little or no desaturase activity, but have significant elongation activity for polyunsaturated fatty acids.  相似文献   

16.
Human mononuclear (MN) and polymorphonuclear (PMN) leukocytes were analyzed for their phospholipid, triglyceride, cholesterol and fatty acid content. The phospholipid/cholesterol ratio was 1.24 for both cels. MN cells contain more phosphatidylcholine (PC), but less phosphatidylserine (PS), phosphatidylethanolamine (PE) and sphingomyelin (SPH) than PMN cells when expressed as percent of total phospholipid. When expressed on the basis of lipid content per cell, MN cells contain less PS, PE and SPH but more triglyceride than PMN cells. PMN cells incorporate palmitic, stearic, linoleic and linolenic acids into their phospholipids, triglycerides or cholesterol esters. The incorporation into triglycerides was highest for all fatty acids. Of the phospholipids, the incorporation was highest into PC. Labeled fatty acids also were found in proteins which had been delipidized by exhaustive extraction with organic solvents. These represent tightly or covalently bound fatty acids. The incorporation of [3H]palmitic acid into this protein fraction is stimulated by insulin.  相似文献   

17.
1. Qualitative and quantitative changes in phosphatidylinositol (PI) were analyzed in the eggs, embryos and tadpoles of the Japanese pond frog, Rana nigromaculata, at various stages of development. 2. The weight percentage of PI to total phospholipid and lipid was about 8.4-15.2% and 1.4-2.6%, respectively, during embryonic life. 3. At the early stages of the unfertilized egg and the two-cell embryo, the predominant fatty acids are palmitic, stearic, oleic and linoleic acid. From the dorsal lip, early gastrula stage and beyond, the percentage of linoleic acid declines and there is an increase in palmitoleic acid. A relatively large amount of arachidonic acid was noted at the unfertilized egg stage at the 1-position. 4. A large amount of arachidonic acid was also observed at the 2-position of PI in the unfertilized egg, hatching embryo and post-hatching tadpole stages, relative to palmitic and stearic acid. 5. Palmitic and stearic acid were increased at the 2-position of PI in the other embryo and the feeding tadpole stages, relative to arachidonic acid, indicating a shift in these molecular species. 6. Thus, there were marked changes in the positional distribution of the constituent fatty acids in PI during early development of R. nigromaculata.  相似文献   

18.
A novel Delta5-desaturase-defective mutant was derived from an arachidonic acid-producing fungus, Mortierella alpina 1S-4, after treating the parental spores with N-methyl-N'-nitro-N-nitrosoguanidine. The mutant produced only a trace (about 1%) amount of arachidonic acid, and the ratio of dihomo-gamma-linolenic acid (DGLA) to total fatty acids in each lipid class was markedly high, accounting for as much as 60% in phosphatidylcholine. Under submerged batch culture conditions, the mutant produced 2.4 g of DGLA per liter (43.3% of total fatty acids) when grown at 28 degrees C for 7 days in a 5-liter jar fermentor. The other major (more that 1%) fatty acids were palmitic acid (21.2%), stearic acid (9.6%), oleic acid (14.3%), linoleic acid (4.4%), and gamma-linolenic acid (5.8%). About 80 mol% of the DGLA produced was found in triacylglycerol.  相似文献   

19.
An investigation of the chemical constituents of lipid of Tremella fuciformis Berk. is the central theme of this study. The sterols, fatty acids and phospholipids are separated by recrystallization, column chromatography and preparative thin layer chromatography, and their constituents are then identified by gas liquid chromatography and spectral data (UV, IR, MS and NMR). The results show that sterols comprise 16.8% ergosterol, 28.5% ergosta-5,7-dien-3β-ol and 54.7% ergost-7-en-3β-ol; fatty adds comprise 1.32%tmdeeanoic acid, 2.37% laurie acid, 1.28% tridecanoic acid, 0.09% myristic acid, 5.43% pentadecanoic acid, 17.20% palmitic acid, 3.11% stearic acid, 2.37% palmitoleic acid, 38.83% oleic acid and 27.98% linoleic acid; phospholipids comprise phosphatidylethanolamine, phosphatidylcholine phosphatidyl glycerol, phosphatidylserine and phosphati- dylinositol. Altogether there are seventeen constituents in the lipid.  相似文献   

20.
CDP-diglyceride : inositol transferase was inhibited by unsaturated fatty acids. The inhibitory activity decreased in the following order: arachidonic acid greater than linolenic acid greater than linoleic acid greater than oleic acid greater than or equal to palmitoleic acid. Saturated fatty acids such as myristic acid, palmitic acid, and stearic acid had no effect. Calcium ion also inhibited the activity of CDP-diglyceride : inositol transferase. In rat hepatocytes, arachidonic acid inhibited 32P incorporation into phosphatidylinositol and phosphatidic acid without any significant effect on 32P incorporation into phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. Ca2+ ionophore A23187 also inhibited 32P incorporation into phosphatidylinositol. However, 32P incorporation into phosphatidic acid was stimulated with Ca2+ ionophore A23187. Phosphatidylinositol-specific phospholipase C was activated by unsaturated fatty acids. Polyunsaturated fatty acids such as arachidonic acid and linolenic acid had a stronger effect than di- and monounsaturated fatty acids. Saturated fatty acids had no effect on the phospholipase C activity. The phospholipase C required Ca2+ for activity. Arachidonic acid and Ca2+ had synergistic effects. These results suggest the reciprocal regulation of phosphatidylinositol synthesis and breakdown by unsaturated fatty acids and Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号