首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partially purified preparations from Aspergillus nidulans were shown to catalyze two alpha-ketoglutarate dependent dioxygenase reactions: the pyrimidine deoxyribonucleoside 2'-hydroxylase (EC 1.14.11.3) and the thymine 7-hydroxylase (EC 1.14.11.6) reactions. These reactions showed an absolute requirement for alpha-ketoglutarate and molecular oxygen and were stimulated by Fe(II), ascorbate and catalase. Both reactions demonstrated a stoichiometry such that for each mole of substrate (deoxyribonucleoside or pyrimidine) hydroxylated one mole of CO2 was produced from alpha-ketoglutarate. These two activities were separated using DEAE-Sephacel chromatography.  相似文献   

2.
3.
Cell-free preparations from Rhodotorula glutinis catalyzed the conversion of deoxyribonucleosides to ribonucleosides in a pyrimidine deoxyribonucleoside 2' -hydroxylase reaction. The reaction occurred with only thymidine or deoxyuridine, of the common deoxyribonucleosides, without detachment of the deoxyribose moiety, at the nucleoside level. The same enzyme preparations catalyzed the conversion of thymine to 5-hydroxymethyluracil in a thymine 7-hydroxylase reaction. Requirements for molecular oxygen, alpha-ketoglutarate, Fe2+, and ascorbate indicated that the 2' -hydroxylase and 7-hydroxylase reactions are of the alpha-keto-acid dioxygenases class. The requirements for alpha-ketoglutarate and Fe2+ were very stringent. During the course of the 2' -hydroxylase and 7-hydroxylase reactions, alpha-ketoglutarate was decarboxylated to form succinate and CO2 so that the ratio of hydroxylated nucleoside or pyrimidine to CO2 was 1:1.5-Hydroxymethyluracil and 5-formyluracil also stimulated the decarboxylation of alpha-ketoglutarate and thus appeared to undergo 7-hydroxylase reactions.  相似文献   

4.
In this paper, we describe an improved enzymatic assay for the determination of deoxyribonucleoside triphosphates (dNTPs). This is based on the elongation of 32P 5'-end-labeled oligonucleotide primers annealed to complementary oligonucleotide templates. Incorporation within the primer/template (p/t) was catalyzed by the Klenow fragment of Escherichia coli DNA polymerase I under conditions where the concentration of the dNTP to be analyzed is limiting. Using a combination of two different sized p/t pairs, dCTP and dTTP (or dATP and dGTP) were assayed together. Since the elongated products were clearly separated after electrophoresis on a denaturing 10% polyacrylamide gel, the two dNTPs could be quantified in a single lane. This method allows for the first time the simultaneous determination of two pyrimidine or two purine deoxyribonucleoside triphosphates. Consequently, a large number of biological samples can be tested in a single experiment. The high sensitivity of this method enables the quantification of low concentrations of dNTPs, such as those found in resting nondividing cells. Furthermore, this new protocol is well suited for the determination of dNTPs in cells treated with the antiretroviral ddI, since the Klenow fragment has a low affinity for ddATP, the active form of ddI.  相似文献   

5.
The incubation of a cell-free protein-synthesizing system prepared from rabbit reticulocytes with cytoplasmic RNA from herpes simplex virus (HSV)-infected cells resulted in increased thymidine kinase activity. This enzyme activity was specifically inhibited by anti-HSV antiserum and was relatively unaffected by TTP, an inhibitor of cellular thymidine kinases. Induction of the new activity was prevented by addition of inhibitors of eucaryotic protein synthesis, and no new activity was detected when RNA from cells infected with pyrimidine deoxyribonucleoside kinase-deficient mutants, instead of wild-type HSV, was added. An increased deoxycytidine kinase activity with similar properties to the HSV-specified enzyme activity was also present in cell-free systems incubated with RNA from HSV-infected cells. Phosphorylation of thymidine and deoxycytidine at 30 degrees C continued for longer than 11 h. The findings are consistent with the accurate synthesis in vitro of enzymically active HSV-specified pyrimidine deoxyribonucleoside kinase.  相似文献   

6.
Thymidine kinase derived from LMTK+ does not exhibit thymidylate kinase activity. However, protein isolated by affinity column chromatography from thymidine kinase-deficient mouse cells (LMTK-) infected by herpes simplex virus type 1 shows thymidylate kinase activity in addition to thymidine kinase and deoxycytidine kinase activities. The virus-induced multifunctional enzyme has a molecular weight of 85,000, whereas the molecular weight of thymidylate kinase from uninfected LMTK- mouse cells is 71,000. The virus-induced enzyme has a Km for thymidine of 0.8 micromolar, and for thymidylate of 25 micromolar, and for thymidylate of 25 micromolar; the ratio of Vmax for thymidylate kinase to thymidine kinase is 1.7. When subjected to isoelectric focusing, thymidylate kinase activity is not separated from thymidine kinase activity, and even though four peaks of activity are observed they have a constant ratio of thymidylate kinase to thymidine kinase activity. The isoelectric points (pI) of these four peaks are 4.8, 5.8, 6.2, and 6.6, respectively. Thymidylate kinase, derived from uninfected cells when subjected to isoelectric focusing, separates into a major component with an isoelectric point at pH 8.2 and a minor component at pH 7.7. Although thymidine and thymidylate kinase activities derived from the virus-infected cells cannot be separated either by affinity column chromatography, glycerol density gradient centrifugation, or isoelectric focusing, there is a differential rate of inactivation when the enzyme is subjected to incubation at 37 degrees, with thymidylate kinase activity being more labile than thymidine kinase activity.  相似文献   

7.
Deficiency of mitochondrial thymidine kinase (TK2) is associated with mitochondrial DNA (mtDNA) depletion and manifests by severe skeletal myopathy in infancy. In order to elucidate the pathophysiology of this condition, mitochondrial deoxyribonucleoside triphosphate (dNTP) pools were determined in patients' fibroblasts. Despite normal mtDNA content and cytochrome c oxidase (COX) activity, mitochondrial dNTP pools were imbalanced. Specifically, deoxythymidine triphosphate (dTTP) content was markedly decreased, resulting in reduced dTTP:deoxycytidine triphosphate ratio. These findings underline the importance of balanced mitochondrial dNTP pools for mtDNA synthesis and may serve as the basis for future therapeutic interventions.  相似文献   

8.
J C Sarup  A Fridland 《Biochemistry》1987,26(2):590-597
Cell extracts from human leukemic T lymphoblasts and myeloblasts were chromatographed on DEAE-cellulose columns to separate purine deoxyribonucleoside, deoxyadenosine (dAdo) and deoxyguanosine (dGuo), phosphorylating activities. Three distinct purine deoxyribonucleoside kinases, a deoxycytidine (dCyd) kinase, an adenosine (Ado) kinase, and a deoxyguanosine (dGuo) kinase (the latter appears to be localized in mitochondria), were resolved. dCyd kinase contained the major phosphorylating activity for dAdo, dGuo, and 9-beta-D-arabinofuranosyladenine (ara-A). Ado kinase represented a second kinase for dAdo and ara-A while a third kinase for dAdo was found in mitochondria. dCyd kinase was purified about 2000-fold with ion-exchange, affinity, and hydrophobic chromatographies. On gel electrophoresis, both dCyd and dAdo phosphorylating activities comigrated, indicating that the activities are associated with the same protein. The enzyme showed a broad pH optimum ranging from pH 6.5 to pH 9.5. Divalent cations Mg2+, Mn2+, and Ca2+ stimulated dCyd kinase activity; Mg2+ produced the maximal activity. dCyd kinase from either lymphoid or myeloid cells showed broad substrate specificity. The enzyme used several nucleoside triphosphates, but ATP, GTP, and dTTP were the best phosphate donors. dCyd was the best nucleoside substrate, since dCyd kinase had an apparent Km of 0.3, 85, 90, and 1400 microM for dCyd, dAdo, dGuo, and ara-A, respectively. The enzyme exhibited substrate activation with both pyrimidine and purine deoxyribonucleosides, suggesting that there is more than one substrate binding site on the kinase. These studies show that, in lymphoblasts and myeloblasts, purine deoxyribonucleosides and their analogues are phosphorylated by dCyd kinase, Ado kinase, and dGuo kinase.  相似文献   

9.
The biosynthesis of the anticancer drug Taxol in yew (Taxus) species is thought to involve the preliminary formation of the advanced taxane diterpenoid intermediate baccatin III upon which the functionally important N-benzoyl phenylisoserinoyl side chain is subsequently assembled at the C13-O-position. In vivo feeding studies with Taxus tissues and characterization of the two transferases responsible for C13-side chain construction have suggested a sequential process in which an aminomutase converts alpha-phenylalanine to beta-phenylalanine which is then activated to the corresponding CoA ester and transferred to baccatin III to yield beta-phenylalanoyl baccatin III (i.e., N-debenzoyl-2'-deoxytaxol) that undergoes subsequent 2'-hydroxylation and N-benzoylation to afford Taxol. However, because the side chain transferase can utilize both beta-phenylalanoyl CoA and phenylisoserinoyl CoA in the C13-O-esterification of baccatin III, ambiguity remained as to whether the 2'-hydroxylation step occurs before or after transfer of the amino phenylpropanoyl moiety. Using cell-free enzyme systems from Taxus suspension cells, no evidence was found for the direct hydroxylation of beta-phenylalanine to phenylisoserine; however, microsomal preparations from this tissue appeared capable of the cytochrome P450-mediated hydroxylation of beta-phenylalanoyl baccatin III to phenylisoserinoyl baccatin III (i.e., N-debenzoyltaxol) as the penultimate step in the formation of Taxol and related N-substituted taxoids. These preliminary results, which are consistent with the proposed side chain assembly process, have clarified an important step of Taxol biosynthesis and set the foundation for cloning the responsible cytochrome P450 hydroxylase gene.  相似文献   

10.
11.
The E. coli polynucleotide phosphorylase-catalysed reaction of the deoxynucleoside 5'-diphosphates of 5-methyldeoxycytidine, N4-hydroxydeoxycytidine, deoxyuridine and 5-mercurideoxyuridine with the primers d(pT-T-A-G) and d(pT-T-T-T-T-T) have been studied under conditions where the primer is extended, predominantly, by one or two nucleotide residues. In experiments with 5-mercurideoxyuridine 5'-diphosphate, no 5-mercurideoxy-uridine-containing oligonucleotides were produced. The other three nucleotide analogs were found to be good substrates for E. coli PNPase and the conditions established for synthesis with these analogs will allow the construction of a number of biologically useful types of oligodeoxyribonucleotide.  相似文献   

12.
Seitz C  Ameres S  Forkmann G 《FEBS letters》2007,581(18):3429-3434
Flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) are cytochrome P450 enzymes and determine the B-ring hydroxylation pattern of flavonoids by introducing hydroxyl groups at the 3'- or the 3'- and 5'-position, respectively. Sequence identity between F3'H and F3'5'H is generally low since their divergence took place early in the evolution of higher plants. However, in the Asteraceae the family-specific evolution of an F3'5'H from an F3'H precursor occurred, and consequently sequence identity is substantially higher. We used this phenomenon for alignment studies, in order to identify regions which could be involved in determining substrate specificity and functionality. Subsequent construction and expression of chimeric genes indicated that substrate specificity of F3'H and F3'5'H is determined near the N-terminal end and the functional difference between these two enzymes near the C-terminal end. The impact on function of individual amino acids located in substrate recognition site 6 (SRS6) was further tested by site-directed mutagenesis. Most interestingly, a conservative Thr to Ser exchange at position 487 conferred additional 5'-hydroxylation activity to recombinant Gerbera hybrida F3'H, whereas the reverse substitution transformed recombinant Osteospermum hybrida F3'5'H into an F3'H with low remaining 5'-hydroxylation activity. Since the physicochemical properties of Thr and Ser are highly similar, the difference in size appears to be the main factor contributing to functional difference. The results further suggest that relatively few amino acids exchanges were required for the evolutionary extension of 3'- to 3',5'-hydroxylation activity.  相似文献   

13.
14.
Beginning with the pioneering work of Salic and Mitchison (2008), the application of thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU) for the detection of cells replicating DNA is actively expanding. Being incorporated into DNA, this nucleoside after click reaction of azide-alkyne cycloaddition with azides of fluorochromes can be easily detected by fluorescence. Recently, protocols of EdU application in combination with click reaction adapted for plant cells appeared, and they are help for a monitoring S-period of the cell cycle in the root meristems and in vitro cultured cells with the help of a microscope and flow cytometer. In this work, we focused some details of developed methods and their modifications and also recommended new protocols. In particular, we suggested combining EdU incorporation into the cells replicating DNA with subsequent isolation of protoplasts from them and their preparation for the microscopic analysis and flow cytometry. In addition, the method of determination of EdU phosphorylation dynamics in the cells in vivo is suggested.  相似文献   

15.
We developed abscinazole-E2B (Abz-E2B), a practical and specific inhibitor of abscisic acid (ABA) 8'-hydroxylase (CYP707A), by structural modification of abscinazole-E1 (Abz-E1), another compound we developed. A butoxy group was introduced to Abz-E2B instead of the tosylate group of Abz-E1, in expectation of better water solubility, because the calculated logP value of Abz-E2B is 3.47, which is smaller than that of Abz-E1 (4.02). The water solubility of Abz-E2B was greater than 90% at a concentration of 100 μM, at which the solubility of Abz-E1 was 20%. The enzyme specificity was improved significantly. In in vitro assays constructed using recombinant enzymes, (±)-Abz-E2B was a considerably weaker inhibitor than (±)-Abz-E1 for CYP701A, a GA biosynthetic enzyme, which is a target of S-uniconazole (S-UNI), a lead compound of Abz-E1. (±)-Abz-E2B application to plants resulted in improved desiccation tolerance and an increase in endogenous ABA, with little retardation of growth. We also prepared optically pure Abz-E2B and determined its absolute configuration. The R-enantiomer of Abz-E2B was the more potent inhibitor of CYP707A, unlike UNI, whereas both enantiomers were markedly less effective than S-UNI in inhibiting CYP701A. Because S-Abz-E2B arrested the growth of rice seedlings at 100 μM, probably because of off-target effects, R-Abz-E2B should be used as a chemical tool for research focusing on CYP707A when 100 μM or higher concentration is required, although (±)-Abz-E2B may be useful as an alternative option at a lower concentration.  相似文献   

16.
Oxygenation of carbon monoxide by bovine heart cytochrome c oxidase   总被引:1,自引:0,他引:1  
Cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1), as the terminal enzyme of the mammalian mitochondrial electron transport chain, has long been known to catalyze the reduction of dioxygen to water. We have found that when reductively activated in the presence of dioxygen, the enzyme will also catalyze the oxidation of carbon monoxide to its dioxide. Two moles of carbon dioxide is produced per mole of dioxygen, and similar rates of production are observed for 1- and 2-electron-reduced enzyme. If 13CO and O2 are used to initiate the reaction, then only 13CO2 is detected as a product. With 18O2 and 12CO, only unlabeled and singly labeled carbon dioxide are found. No direct evidence was obtained for a water-gas reaction (CO + H2O----CO2 + H2) of the oxidase with CO. The CO oxygenase activity is inhibited by cyanide, azide, and formate and is not due to the presence of bacteria. Studies with scavengers of partially reduced dioxygen show that catalase decreases the rate of CO oxygenation.  相似文献   

17.
Xie HG 《Life sciences》2000,66(14):PL175-PL181
Most of phenotyping studies have shown that Chinese populations have a higher incidence of poor metabolizers (PMs) of S-mephenytoin 4'-hydroxylation compared with populations of African and European descent. The present study was aimed at defining an exact population frequency of the genetic defect of S-mephenytoin 4'-hydroxylase (CYP2C19) in native and overseas Chinese healthy populations. All the related data were systematically summarized and re-analyzed using meta-analysis method, and consistency between phenotypic and genotypic frequencies of the PM was tested. A statistically significant homogeneity was across all 11 phenotyping studies (chi2 = 15.17, d.f. = 10; P > 0.05) and also across the remaining 4 genotyping studies (chi2 = 2.61, d.f. = 3; P > 0.05) except for a non-randomly selected population analysis. An approximate estimate of the PM phenotypic and genotypic frequencies was 13.6% (212 of 1555; 95% CI: 11.9%-15.3%) and 13.8% (79 of 573; 95%CI: 11.0%-16.6%), respectively. There was a good consistency between phenotyped and genotyped PM frequencies. The half of all genotyped EMs (50.3%, 276 of 549) were heterozygotes. The data estimate that 14% of Chinese would be homozygotes of CYP2C19 defective alleles, and that 176 million Chinese would be slow metabolizers of CYP2C19 substrates.  相似文献   

18.
Deoxyribonucleoside kinases are feedback inhibited by the final products of the salvage pathway, the deoxyribonucleoside triphosphates. In the present study, the mechanism of feedback inhibition is presented based on the crystal structure of a complex between the fruit fly deoxyribonucleoside kinase and its feedback inhibitor deoxythymidine triphosphate. The inhibitor was found to be bound as a bisubstrate inhibitor with its nucleoside part in the nucleoside binding site and with its phosphate groups partially occupying the phosphate donor site. The overall structure of the enzyme--inhibitor complex is very similar to the enzyme--substrate complexes with deoxythymidine and deoxycytidine, except for a conformational change within a region otherwise directly involved in catalysis. This conformational change involves a magnesium ion, which is coordinated in the inhibitor complex to the phosphates and to the primary base, Glu52, that normally is positioned close to the 5'-OH of the substrate deoxyribose.  相似文献   

19.
李茜茜  汪晓峰 《广西植物》2009,29(3):353-359
脱落酸(ABA)在植物的生长发育和环境胁迫响应等过程中具有重要作用。ABA合成与分解代谢的动态平衡共同调控植物内源ABA水平。ABA8′位甲基羟基化途径是高等植物内源ABA代谢的主要途径;8′-羟化酶是该代谢途径的关键酶,属于P450酶系。生物化学和基因组学研究表明,拟南芥CYP707A家族基因编码8′-羟化酶,该基因家族广泛存在于高等植物中,调控植物内源ABA代谢,介导ABA相关的生理生化过程。本文综述了ABA分解代谢的基本途径,详细概述了ABA8′位甲基羟基化途径及该代谢途径的关键酶8′-羟化酶。同时介绍了8′-羟化酶编码基因-CYP707A家族基因的生物学特征和功能。  相似文献   

20.
As part of a Lead Optimisation programme to identify small molecule antagonists of the human CXCR2 receptor, a series of substituted thiazolo[4,5-d]pyrimidines was prepared via the application of a novel tandem displacement reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号