首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipoprotein lipase and hepatic lipase have been shown to be present in the post-heparin plasma of sheep. Intravenous injection of heparin into sheep produced a rapid increase in the free fatty acid concentration and lipolytic enzyme activity of the plasma, both peaking within 5-15 min and then falling to pre-heparin levels within 30-60 min. Lipolytic activity was not detected in plasma before heparin treatment. Two distinct lipolytic activities were separated from the plasma by chromatography on heparin-Sepharose 6B. Lipoprotein lipase was identified on the basis that the lipolytic activity was dependent upon the addition of plasma, inhibited by 1M NaCl, and inhibited by a specific antiserum against lipoprotein lipase. The second lipolytic activity of plasma was identified as hepatic lipase, as it was not dependent upon plasma for activity, nor was it inhibited by 1M NaCl or antiserum against lipoprotein lipase. Its properties were identical to the lipase extracted from the liver of sheep. Lipoprotein-lipase activity, but not hepatic-lipase activity, was dependent upon the nutritional state of the sheep at the time of heparin injection. However, hepatic lipase comprised a significant proportion of the total lipolytic activity.  相似文献   

2.
Whole-irradiated rabbit pre-heparin plasma had an important inhibitory effect on hepatic triacylglycerol lipase and lipoprotein lipase activities, whereas control rabbit pre-heparin plasma slightly inhibited hepatic triacylglycerol lipase activity at a high concentration and enhanced lipoprotein lipase activity. As some apolipoproteins were known to modulate these two lipolytic enzymes, the inhibitory effects of irradiated rabbit plasma were investigated in apolipoproteins. Three apolipoproteins, with isoelectric points of about 6.58, 6.44 and 6.12, characterized by their low content in threonine (threonine-poor apolipoproteins) were produced in high concentrations in rabbit VLDL and HDL after irradiation. The effects of these apolipoproteins on control rabbit post-heparin plasma hepatic triacylglycerol lipase and extrahepatic lipoprotein lipase were studied. Threonine-poor apolipoproteins substantially inhibited the hepatic triacylglycerol lipase activity and enhanced the apolipoprotein C-II-stimulated activity of lipoprotein lipase. The amounts of these apolipoproteins in triacylglycerol-rich lipoprotein particles may determine the lipolytic activity of lipoprotein lipase and hepatic triacylglycerol lipase in triacylglycerol hydrolysis. The existence of another inhibitor of lipoprotein lipase remains to be determined.  相似文献   

3.
The effect of different amounts of heparin injected intravenously in swine on lipoprotein lipase and hepatic lipase activities in post-heparin plasma was studied using an immunochemical method. After the injection of 50 I.U. of heparin/kg body weight the apparent half-life of lipoprotein lipase and hepatic lipase activity measurable in post-heparin plasma was 15 min. This was prolonged to more than 60 min after the injection of 1000 I.U./kg body weight. It is concluded that the higher the heparin dose injected the longer can lipolytic activities be measured in plasma. A possible explanation for these findings is that the amount of circulating heparin governs the distribution of lipoprotein lipase and hepatic lipase between an endothelial-bound form and a circulating form and thus determines the apparent ‘half-life’ of lipase activity measurable in plasma. The apparent half-life of radioactively labelled heparin in normal swine was not different from that observed in hepatectomized animals. After hepatectomy no immunoreactive hepatic lipase activity could be demonstrated in post-heparin plasma confirming our previous findings that the liver is the only source of hepatic lipase.To study the role of the liver in the clearance of plasma lipoprotein lipase activity after the administration of heparin normal and hepatectomized pigs were given 200 I.U./kg body weight followed by a heparin infusion of 100 I.U./ h per kg body weight. In the control pigs the heparin injection caused a rapid release of lipoprotein lipase and hepatic lipase activities. These activities were maintained in the circulation during the 3-h infusion at a level of about 60% of the levels measurable 30 min after the injection. In hepatectomized pigs the lipoprotein lipase activity rose during the infusion to about six times the activity recorded 30 min after heparin administration. From these experiments we conclude that after heparin injection the liver is involved in the clearance of post-heparin plasma lipolytic activity.  相似文献   

4.
Conditions for measurement of the lipolytic activities, lipoprotein lipase and hepatic triacylglycerol lipase in cynomolgus monkey postheparin plasma are described. The two activities are separable by heparin-Sepharose chromatography. Goat anti-human hepatic triacylglycerol lipase serum inhibits monkey hepatic triacylglycerol lipase activity and allows direct measurement of lipoprotein lipase in post-heparin plasma. While both human and homologous serum can be used as a source of activator apolipoprotein, homologous serum produces a much greater activation.  相似文献   

5.
Following its secretion into the plasma compartment, the high-density lipoprotein (HDL) is presumed to be acted upon by both soluble enzymes, such as lecithin:cholesterol acyltransferase (LCAT), and membrane-associated enzymes, such as lipoprotein lipase and hepatic lipase. Rats were injected intravenously with heparin to release membrane-associated lipolytic activities into the circulation and the collected plasma was incubated overnight at 37 degrees C in the presence or absence of an LCAT inhibitor or an inhibitor of lipoprotein lipase (1 M NaCl). It was observed that lipoprotein lipase accounted for most of the triglyceride hydrolase activity in the heparin-treated plasma, and that the heparin-releasable activities caused an increase in HDL density but no measurable change in particle size when LCAT was inhibited. Heparin treatment caused about a 60% decrease in plasma triacylglycerol during the interval between injection of heparin and blood collection. Although this caused marked compositional changes in the d less than 1.063 g/ml lipoproteins, no changes were observed in the lipid composition or apoprotein distribution in the HDL. Subsequent incubation for 18 h at 37 degrees C produced marked increases in the apoE content of HDL from heparin-treated plasma even when LCAT was inhibited. Time-course studies showed that in the presence of an LCAT inhibitor there was considerable conversion of phosphatidylcholine to lysophosphatidylcholine in heparin-treated plasma, and that this activity was diminished by 1 M NaCl, but that no phospholipolysis was observed in control plasma. By contrast, both heparin-treated and control plasma possessed substantial triglyceride hydrolase activity. The concurrent action of lipases and LCAT was observed to reduce the maximum level of cholesterol esterification which could be achieved in the absence of lipase activity. It is concluded that changes in HDL particle size are mainly attributable to LCAT, but that lipase activities, which are either free in rat plasma or releasable by heparin, play a role in restructuring the phospholipid moiety and altering the protein composition of the HDL, especially with respect to apoE, a potential ligand to cellular receptors.  相似文献   

6.
Two triacylglycerol lipase activities were characterized after partial purification from pig post-heparin plasma. These two lipase activities were eluted sequentially with a NaCl gradient from columns containing Sepharose with covalently linked heparin. The first lipase activity, which was eluted at 0.75M-NaCl, was not inhibited at 28 degrees C in the presence of 1M-NaCl and was not further activated by plasma apolipoproteins. The absence of this lipase activity from post-heparin plasma from hepatectomized pigs indicates that the liver plays a role in the synthesis of this enzyme. A second lipase activity, which was eluted at 1.2M-NaCl, was inhibited when assayed in the presence of 1.0M-NaCl and was activated 14-fold by an apolipoprotein isolated from human very-low-density lipoprotein. The characteristics are identical with those of lipoprotein lipase purified from pig adipose tissue.  相似文献   

7.
Studies were conducted to compare human and bovine lipoprotein lipase (LPL) preparations with regard to immunological cross-reactivity and substrate specificity. LPL was partially purified from human milk. An antiserum against the human LPL preparation was produced in a goat. This antiserum inhibited LPL enzymatic activity in human milk and in human post-heparin plasma. Neither bovine milk nor bovine post-heparin plasma LPL enzymatic activity was inhibited by this antiserum. These findings suggest that there are significant structural differences between the human and bovine enzymes in domains that are involved in enzymatic activity. Human and bovine post-heparin plasma and partially purified preparations of LPL from human and bovine milk were compared with regard to substrate specificity, by comparing their lipolytic activities against triglyceride, cholesteryl esters, and retinyl esters. Only the partially purified bovine milk LPL preparation possessed retinyl palmitate hydrolase activity. The results suggest that this latter activity may be the result of a previously unrecognized contaminant in the commonly used LPL preparations from bovine milk.  相似文献   

8.
Chylomicrons labeled with [3H]arachidonic and [14C]linoleic acid were incubated with bovine milk lipoprotein lipase or rat postheparin plasma, containing both lipoprotein lipase and hepatic lipase. During incubation with bovine lipoprotein lipase, [3H]arachidonic acid was released from chylomicron triacylglycerols at a slower rate than [14C]linoleic acid. Only small amounts of [14C]linoleic acid were found as 1,2(2,3)-diacylglycerols, whereas a transient accumulation as [14C]monoacylglycerols was observed. In contrast, significantly more [3H]arachidonic acid was found as 1,2(2,3)-diacylglycerols than as monoacylglycerols at all time intervals investigated. The initial pattern of triacylglycerol hydrolysis by postheparin plasma was similar to that of bovine lipoprotein lipase. However, in contrast to the results obtained with bovine lipoprotein lipase, little [3H]1,2(2,3)-diacylglycerol accumulated. The addition of antiserum to hepatic lipase increased the amount of 3H found in 1,2(2,3)-diacylglycerols and inhibited the formation of free [3H]arachidonic acid. The antiserum also caused a significant inhibition of the hydrolysis of [3H]-but not of [14C]triacylglycerol. With regard to chylomicron phospholipids, the rate of hydrolysis of [14C]linoleoyl phosphatidylcholine with milk lipoprotein lipase was twofold higher than that of the [3H]arachidonyl phosphatidylcholine. However, the hepatic lipase of postheparin plasma had similar activity towards the two phosphatidylcholine species. Postheparin plasma rapidly hydrolyzed chylomicron 3H-labeled and 14C-labeled phosphatidylethanolamine to the same degree, and lipoprotein lipase similarly hydrolyzed 3H-labeled and 14C-labeled phosphatidylethanolamine at approximately equal rates. Antiserum to hepatic lipase inhibited the postheparin plasma hydrolysis of phosphatidylethanolamine and 3H-labeled phosphatidylcholine by about 60%, but the 14C-labeled phosphatidylcholine by only 27%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Effect of ingestion of unsaturated fat on lipolytic activity of rat tissues   总被引:1,自引:0,他引:1  
Homogenates of some rat tissues, incubated in Tris-maleate buffer containing bovine serum albumin, olive oil emulsion, heparin, and serum, liberated free fatty acids. The total lipolytic activity in tissues of rats fed a low fat, 20% lard, or 20% corn oil diet for 6 wk was measured. Similar activities were found in all the livers, but there was a significant increase in the total lipolytic activity of the mucosa, epididymal fat, and mesenteric tissues after ingestion of an unsaturated fat diet as compared with that containing a more saturated fat. From measurements of the lipolytic activity in the presence of 1 M NaCl or 0.2 M NaF and in the absence and presence of heparin and serum, the conclusion is drawn that more lipoprotein lipase was present in adipose tissue of rats on unsaturated fat diets. An increase in available lipoprotein lipase after unsaturated fat diets may aid in clearing lipids from the blood of these rats and thus in producing the lower blood lipid levels obtained.  相似文献   

10.
A preparation of cerebral microvessels was used to demonstrate the presence of lipoprotein lipase and acid lipase activity in the microvasculature of rabbit brain. Microvessels, consisting predominantly of capillaries, small arterioles, and venules, were islated from rabbit brain. Homogenates were assayed for lipolytic activity using a glycerol-stabilized trioleoylglycerol-phospholipid emulsion as substrate. Lipoprotein lipase activity was characterized with this substrate by previously established criteria including an alkaline pH optimum, increased activity in the presence of heparin and heat-inactivated plasma, and reduced activity in the presence of NaCl and protamine sulfate. A different substrate, containing trioleoylglycerol incorporated into phospholipid vesicles, was used to reveal acid lipase activity that was not affected by heparin, plasma, NaCl, or protamine sulfate. Lipoprotein lipase did not show activity with the vesicle preparation as substrate. Intact microvessels, when incubated in the presence of heparin, release lipoprotein lipase into the incubation solution. In contrast, release of acid lipase activity from intact microvessels was not dependent on heparin. The data show the presence of both lipoprotein lipase and acid lipase in brain microvessels and suggest that lipoproteins are metabolized within the cerebral vasculature.  相似文献   

11.
Circadian rhythms of plasma lipids and lipoproteins, lipoprotein lipase activities and VLDL secretion rates were studied in fed and food-deprived (12 h) male rats after a light/dark synchronization of 14 days. In ad libitum fed rats, a circadian rhythm of plasma triacylglycerol, blood glucose and liver glycogen was clearly identified. A rhythm was also identified for plasma cholesterol, but not phospholipids. The peak of plasma triacylglycerol occurred 2 h after the beginning of the light period (7.00 a.m.), and the nadir, 2 h after the beginning of the dark period (7.00 p.m.). The differences of plasma triacylglycerol at these two circadian stages were even more pronounced in food-deprived rats and were confined to the very-low-density lipoprotein (VLDL) fraction. Plasma post-heparin and heart and muscle lipoprotein lipase activities were 50-100% higher at 7.00 p.m., the time when plasma triacylglycerol were lowest, as compared to 7.00 a.m. Plasma post-heparin hepatic lipase and adipose tissue lipoprotein lipase activities, in contrast, did not change. VLDL secretion rates were somewhat higher at 7.00 a.m. compared to 7.00 p.m., but this difference was not significant. It is concluded that physiological variation of heart and muscle lipoprotein lipase together with small differences of VLDL secretion rates are responsible for normal range oscillations of plasma VLDL triacylglycerol levels.  相似文献   

12.
Immunochemical methods for the selective measurement of pig post-heparin plasma lipoprotein lipase and hepatic lipase are described and validated. A simple two step purification method for porcine hepatic lipase from hepatic perfusate based on affinity chromatography and gel filtration is reported. The activity of the post-heparin plasma lipoprotein lipase and hepatic lipase in swine is reported. It is demonstrated that fasting decreases the activity of post-heparin plasma lipoprotein lipase activity more than two-fold while it does not affect the hepatic lipase activity significantly.  相似文献   

13.
Lipoprotein lipase and hepatic lipase were measured in rat plasma using specific antisera. Mean values for lipoprotein lipase in adult rats were 1.8-3.6 mU/ml, depending on sex and nutritional state. Values for hepatic lipase were about three times higher. Lipoprotein lipase activity in plasma of newborn rats was 2-4-times higher than in adults. In contrast, hepatic lipase activity was lower in newborn than in adult rats. Following functional hepatectomy there was a progressive increase in lipoprotein lipase activity in plasma, indicating that transport of the enzyme from peripheral tissues to the liver normally takes place. Lipoprotein lipase, but not hepatic lipase, increased in plasma after a fat meal. An even more marked increase, up to 30 mU/ml, was seen after intravenous injection of Intralipid. Plasma lipase activity decreased in parallel with clearing of the injected triacylglycerol. 125I-labeled lipoprotein lipase injected intravenously during the hyperlipemia disappeared somewhat slower from the circulation than in fasted rats, but the uptake was still primarily in the liver. Hyperlipemia, or injection of heparin, led to increased lipoprotein lipase activity in the liver. This was seen even when the animals had been pretreated with cycloheximide to inhibit synthesis of new enzyme protein. These results suggest that during hypertriglyceridemia lipoprotein lipase binds to circulating lipoproteins/lipid droplets which results in increased plasma levels of the enzyme and increased transport to the liver.  相似文献   

14.
A large amount of triacylglycerol lipase activity was present in the circulating blood of normal mice, and this activity decreased with development of Sarcoma 180 inoculated intraperitoneally. Triacylglycerol lipase in plasma of both normal and tumor-bearing mice was retained on the heparin-Sepharose columns and over 90% of the activity was eluted with 0.75 M NaCl. This enzyme had similar properties to hepatic triacylglycerol lipase and hydrolyzed very-low-density lipoprotein (VLDL)-triacylglycerol. Hepatic triacylglycerol lipase in plasma of normal mice hydrolyzed tricaprin and trilaurin most readily and better than 1-monoacylglycerols with the same acyl chain length. The hydrolyzing activities decreased with increase in the acyl chain length. The activity toward triolein was also higher than that toward 1-monoolein. 1-Monomyristin was hydrolyzed better than trimyristin. In contrast, hepatic triacylglycerol lipase in plasma of mice on day 4 after tumor inoculation hydrolyzed 1-monoacylglycerols better than triacylglycerols with the same acyl chain length. Hydrolysis of triolein by hepatic triacylglycerol lipase in plasma of both normal and tumor-bearing mice was reduced in the presence of 1-monoacylglycerols in the reaction mixture. The orders of their inhibitory effects coincided with the orders of the hydrolyzing activities toward 1-monoacylglycerols.  相似文献   

15.
The effects of saturated and polyunsaturated dietary fat on the lipolytic activity of post-heparin plasma, lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) were studied in the rat. The lipolytic activity was studied from 0 to 60 min using labelled chylomicrons as the substrate. Triacylglycerol hydrolysis rate was higher for the plasma of rats fed high fat diets (14% fat by weight). Chylomicrons of rats fed saturated or unsaturated fats were hydrolyzed at the same rate within the first 15 min but afterwards hydrolysis of chylomicrons of rats fed saturated fat was slower. The activities of LPL and HTGL were increased by high fat diets. Unsaturated fat increased more LPL activity than saturated fat conversely, HTGL activity was enhanced more by saturated fat than by unsaturated fat.  相似文献   

16.
1. The lipoprotein lipase activity measured in acetone-ether powders of tissues from White Carneau and Show Racer pigeons was invariably somewhat lower in the former compared with the latter species. 2. At 100 and 200 Units of heparin per kg body weight the peak post-heparin lipolytic activity present in the plasma of White Carneau pigeons was significantly lower than that for Show Racers. At 50 Units per kg, this position was reversed. 3. It was concluded that the White Carneau pigeon may have an impaired functional lipoprotein lipase capacity compared to the Show Racer control.  相似文献   

17.
The lipid-lowering effect of pantethine, a new drug affecting lipid metabolism, had been evaluated in carbohydrate-induced hyperlipidemic rats. Administration of the drug raised post-heparin lipolytic activities, the change being due to an increase in lipoprotein lipase activity, whereas hepatic lipase activity remained virtually unchanged. Total lipoprotein lipase activity per g of adipose tissue increased in pantethine-treated rats compared with controls. Furthermore, the soluble lipoprotein lipase of fat-pads was fractionated by heparin-Sepharose affinity chromatography. The first active peak, originated from the microsomal fractions, significantly increased after the drug treatment, while the second one, originated from the plasma membranes, remained unchanged. The increase in the microsomal lipoprotein lipase activity may be due to an increase in intracellular synthesis of lipoprotein lipase enzyme proteins. The heterogeneity of lipoprotein lipase of rat adipose tissues was ensured using affinity chromatography on heparin-Sepharose.  相似文献   

18.
Hepatic triacylglycerol lipase (EC 3.1.1.3) hydrolyzes water-insoluble fatty acid esters, e.g., trioleoylglycerol (lipase activity) and water-soluble fatty acid esters, e.g., tributyrin (esterase activity). Esterase activity of hepatic triacylglycerol lipase is enhanced by triolein emulsion and phospholipid vesicles [1]. The catalytic mechanism and structure of human hepatic triacylglycerol lipase isolated from human post-heparin plasma and the effect of trypsin treatment on the lipase and esterase activities of the enzyme were examined. Treatment of hepatic triacylglycerol lipase with trypsin resulted in loss of its lipase activity, but had no effect on its esterase activity. Chromatography of hepatic triacylglycerol lipase on Bio-Gel A5m showed that hepatic triacylglycerol lipase binds to dipalmitoylphosphatidylcholine vesicles. However, on chromatography of the trypsin-treated enzyme after incubation with dipalmitoylphosphatidylcholine vesicles, a part of hepatic triacylglycerol lipase that retained esterase activity was eluted separately from the dipalmitoylphosphatidylcholine vesicles. Addition of vesicles of dipalmitoylphosphatidylcholine to the trypsin-treated enzyme did not enhance its esterase activity. These results are consistent with the hypothesis that hepatic triacylglycerol lipase has a catalytic site that hydrolyzes tributyrin and a lipid interface recognition site, and that these sites are different: trypsin modified the lipid interface recognition site of the hepatic triacylglycerol lipase but not the catalytic site.  相似文献   

19.
Postheparin plasma lipolytic activity consists of two hydrolytic activities, hepatic triglyceride lipase and lipoprotein lipase. These two enzymes were separated and partially purified by means of ammonium sulfate precipitation and affinity chromatography using Sepharose with covalently linked heparin and concanavalin A, respectively. Antibodies were produced against hepatic triglyceride lipase and they did not cross react with lipoprotein lipase. Optimal conditions for selective precipitation of hepatic lipase and specific measurement of these two lipases were investigated. This method was applied to the study of 15 patients with hypertriglyceridemia and 8 patients with familial lecithin-cholesterol-acyltransferase deficiency of whom 6 also had a marked elevated plasma triglyceride concentration. All patients had normal values of hepatic plasma lipase. All 8 patients with Type I and 2 of 4 patients with Type V hyperlipoproteinemia had lipoprotein lipase activities that were markedly reduced. The patients with Type III hyperlipoproteinemia and all 8 patients with lecithin-cholesterol-acyltransferase deficiency also had normal lipoprotein lipase values. These studies emphasize the necessity for differentiating between triglyceride lipase activity of hepatic and extrahepatic origin in evaluating patients with impaired triglyceride metabolism.  相似文献   

20.
A lipoprotein lipase in the bovine arterial wall has been identified and partially characterized. The enzyme has a Km apparent of 1 mM for triolein in a phosphatidylcholine stabilized emulsion. The lipase was stimulated 20- to 30-fold by the addition of heated rat plasma to the assay medium. The activity exhibited a pH optimum at 8.6. Protamine sulfate (1.0 mg/ml) inhibited the activity by 50%, whereas 1.4 M sodium chloride inhibited by 85%. Sodium fluoride, an inhibitor of the hormone-sensitive lipase, had no effect on the activity. Additions of low concentrations of heparin or Ca-2+ to the enzyme caused a slight stimulation of the lipolytic activity. A crude sectioning of the aorta revealed specific activity of lipoprotein lipase to be highest at the endothelial side of the artery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号