首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
Single-nucleotide polymorphisms (SNPs) are essential tools for studying a variety of organismal properties and processes, such as recombination, chromosomal dynamics, and genome rearrangement. This paper describes the development of a genome-wide SNP map for Candida albicans to study mitotic recombination and chromosome loss. C. albicans is a diploid yeast which propagates primarily by clonal mitotic division. It is the leading fungal pathogen that causes infections in humans, ranging from mild superficial lesions in healthy individuals to severe, life-threatening diseases in patients with suppressed immune systems. The SNP map contains 150 marker sequences comprising 561 SNPs and 9 insertions-deletions. Of the 561 SNPs, 437 were transition events while 126 were transversion events, yielding a transition-to-transversion ratio of 3:1, as expected for a neutral accumulation of mutations. The average SNP frequency for our data set was 1 SNP per 83 bp. The map has one marker placed every 111 kb, on average, across the 16-Mb genome. For marker sequences located partially or completely within coding regions, most contained one or more nonsynonymous substitutions. Using the SNP markers, we identified a loss of heterozygosity over large chromosomal fragments in strains of C. albicans that are frequently used for gene manipulation experiments. The SNP map will be useful for understanding the role of heterozygosity and genome rearrangement in the response of C. albicans to host environments.  相似文献   

4.
5.
6.
In view of the importance of Candida drug resistance protein (Cdr1p) in azole resistance, we have characterized it by overexpressing it as a green fluorescent protein (GFP)-tagged fusion protein (Cdr1p-GFP). The overexpressed Cdr1p-GFP in Saccharomyces cerevisiae is shown to be specifically labeled with the photoaffinity analogs iodoarylazidoprazosin (IAAP) and azidopine, which have been used to characterize the drug-binding sites on mammalian drug-transporting P-glycoproteins. While nystatin could compete for the binding of IAAP, miconazole specifically competed for azidopine binding, suggesting that IAAP and azidopine bind to separate sites on Cdr1p. Cdr1p was subjected to site-directed mutational analysis. Among many mutant variants of Cdr1p, the phenotypes of F774A and ΔF774 were particularly interesting. The analysis of GFP-tagged mutant variants of Cdr1p revealed that a conserved F774, in predicted transmembrane segment 6, when changed to alanine showed increased binding of both photoaffinity analogues, while its deletion (ΔF774), as revealed by confocal microscopic analyses, led to mislocalization of the protein. The mislocalized ΔF774 mutant Cdr1p could be rescued to the plasma membrane as a functional transporter by growth in the presence of a Cdr1p substrate, cycloheximide. Our data for the first time show that the drug substrate-binding sites of Cdr1p exhibit striking similarities with those of mammalian drug-transporting P-glycoproteins and despite differences in topological organization, the transmembrane segment 6 in Cdr1p is also a major contributor to drug substrate-binding site(s).  相似文献   

7.
The cellular location of proteases in Candida albicans   总被引:1,自引:0,他引:1  
Vacuoles prepared from yeast cells of Candida albicans were enriched in proteinase ycaB (EC 3.4.21.48) but not in aminopeptidase or beta-glucosidase. Proteinase ycaB, assayed in situ, increased 1.5-fold during starvation whereas aminopeptidase activity decreased by 25%. Proteinase ycaB increased a further 1.5-fold during germ-tube formation.  相似文献   

8.
9.
10.
11.
Pathogenic fungus Candida albicans can efficiently utilize the aminosugar N-acetylglucosamine (GlcNAc) as energy source. Since the mucosal membrane, the site of infection is rich in amino sugars, this specific adaptation is important for the establishment of infection. The genes encoding for the enzymes of the GlcNAc catabolic pathway, GlcNAc kinase (HXK1), GlcNAc-6-phosphate deacetylase (DAC1), and glucosamine-6-phosphate deaminase (NAG1), are present in a cluster, the Nag regulon, which is associated with virulence. In this study, we have characterized two genes, TMP1 and TMP2, present within the Nag regulon, upstream to DAC1. They encode two membrane associated sugar transporters of the major facilitator superfamily (MFS). The null mutant of TMP1 and TMP2 is able to grow in GlcNAc, implying that they are not involved in GlcNAc transport. However, it shows increased susceptibility to a number of unrelated antifungal compounds such as cycloheximide, 4-nitroquinoline-N-oxide, and 1-10 phenanthroline. Northern blot analysis revealed that TMP1 and TMP2 are upregulated in response to these drugs, suggesting that they function as multiple drug efflux pumps.  相似文献   

12.
13.
14.
15.
Saccharomyces cerevisiae Hsl1p is a Ser/Thr protein kinase that regulates cell morphology. We identified Candida albicans CaHSL1 and analysed its function in C. albicans. Cells lacking CaHsl1p exhibited filamentous growth under yeast growth conditions with the filaments elongating more quickly than did those of the wild type under hyphal growth conditions, suggesting that it plays a role in the suppression of cell elongation. Green fluorescent protein-tagged CaHsl1p colocalized with a septin complex to the bud neck during yeast growth or to a potent septation site during hyphal growth, as expected from the localization in S. cerevisiae. However, the localization of the septin complex did not change in DeltaCahsl1, suggesting that CaHsl1p does not participate in septin organization. CaHsl1p was expressed in a cell cycle-dependent manner and, except for the G1 phase, phosphorylated throughout the cell cycle. In DeltaCahsl1 cells, the phosphorylation of a possible CaHsl1p target CaSwe1p decreased, while that of CaCdc28p at tyrosine18 increased. Either an extra copy of the tyrosine18-mutated CaCdc28p or deletion of CaSWE1 suppressed the cell elongation phenotype caused by CaHSL1 deletion. Furthermore, DeltaCahsl1 exhibited reduced virulence in the mouse systemic candidiasis model. Thus, the CaHsl1p-CaSwe1p-CaCdc28p pathway appears important in the cell elongation of both the yeast and hyphal forms and to the virulence of C. albicans.  相似文献   

16.
17.
Candida albicans is a prevalent fungal pathogen amongst the immunocompromised population, causing both superficial and life-threatening infections. Since C. albicans is diploid, classical transmission genetics can not be performed to study specific aspects of its biology and pathogenesis. Here, we exploit the diploid status of C. albicans by constructing a library of 2,868 heterozygous deletion mutants and screening this collection using 35 known or novel compounds to survey chemically induced haploinsufficiency in the pathogen. In this reverse genetic assay termed the fitness test, genes related to the mechanism of action of the probe compounds are clearly identified, supporting their functional roles and genetic interactions. In this report, chemical-genetic relationships are provided for multiple FDA-approved antifungal drugs (fluconazole, voriconazole, caspofungin, 5-fluorocytosine, and amphotericin B) as well as additional compounds targeting ergosterol, fatty acid and sphingolipid biosynthesis, microtubules, actin, secretion, rRNA processing, translation, glycosylation, and protein folding mechanisms. We also demonstrate how chemically induced haploinsufficiency profiles can be used to identify the mechanism of action of novel antifungal agents, thereby illustrating the potential utility of this approach to antifungal drug discovery.  相似文献   

18.
19.
20.
目的探讨氟康唑作用于白念珠菌双组分信号传导途径SSK1突变株SSK21后药物敏感性的变化。方法采用微量液体稀释法和固醇测定法测定野生株(CAF2-1)和突变株(SSK21)的最小抑菌浓度(MIC);并应用RT-PCR观察氟康唑作用前后,SSK1的表达变化。结果氟康唑对CAF2-1的MIC为16μg/mL,对SSK21为0.032μg/mL。加入氟康唑后,CAF2-1的SSK1表达明显增加,60min时达到最多。结论 SSK21对氟康唑高度敏感,SSK1基因及其相关的重要基因与药物敏感性的关系值得进一步研究,从而为新的抗真菌药物和治疗途径的研发提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号