首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stress-activated protein kinase 2 (SAPK2/p38) is activated by various environmental stresses and also by a vast array of agonists including growth factors and cytokines. This implies the existence of multiple proximal signaling pathways converging to the SAPK2/p38 activation cascade. Here, we show that there is a sensing mechanism highly specific to heat shock for activation of SAPK2/p38. After mild heat shock, cells became refractory to reinduction of the SAPK2/p38 pathway by a second heat shock. This was not the result of a toxic effect because the cells remained fully responsive to reinduction by other stresses, cytokines, or growth factors. Neither the activity of SAPK2/p38 itself nor the accumulation of the heat shock proteins was essential in the desensitization process. The cells were not desensitized to heat shock by other treatments that activated SAPK2/p38. Moreover, inhibiting SAPK2/p38 activity during heat shock did not block desensitization. Also, overexpression of HSP70, HSP27, or HSP90 by gene transfection did not cause desensitization, and inhibiting their synthesis after heat shock did not prevent desensitization. Desensitization rather appeared to be linked closely to the turnover of a putative upstream activator of SAPK2/p38. Cycloheximide induced a progressive and eventually complete desensitization. The effect was specific to heat shock and minimally affected activation by other stress inducers. Inhibiting protein degradation with MG132 caused the constitutive activation of SAPK2/p38, which was blocked by a pretreatment with either cycloheximide or heat shock. The results thus indicate that there is a sensing pathway highly specific to heat shock upstream of SAPK2/p38 activation. The pathway appears to involve a short lived protein that is the target of rapid successive up- and down-regulation by heat shock.  相似文献   

2.
MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6.   总被引:19,自引:2,他引:17       下载免费PDF全文
Mixed lineage kinase-3 (MLK-3) is a 97 kDa serine/threonine kinase with multiple interaction domains, including a Cdc42 binding motif, but unknown function. Cdc42 and the related small GTP binding protein Rac1 can activate the SAPK/JNK and p38/RK stress-responsive kinase cascades, suggesting that MLK-3 may have a role in upstream regulation of these pathways. In support of this role, we demonstrate that MLK-3 can specifically activate the SAPK/JNK and p38/RK pathways, but has no effect on the activation of ERKs. Immunoprecipitated MLK-3 catalyzed the phosphorylation of SEK1 in vitro, and co-transfected MLK-3 induced phosphorylation of SEK1 and MKK3 at sites required for activation, suggesting direct regulation of these protein kinases. Furthermore, interactions between MLK-3 and SEK and MLK-3 and MKK6 were observed in co-precipitation experiments. Finally, kinase-dead mutants of MLK-3 blocked activation of the SAPK pathway by a newly identified mammalian analog of Ste20, germinal center kinase, but not by MEKK, suggesting that MLK-3 functions to activate the SAPK/JNK and p38/RK cascades in response to stimuli transduced by Ste20-like kinases.  相似文献   

3.
Stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK), which is a member of the mitogen-activated protein kinase (MAPK) family, plays an important role in a stress-induced signaling cascade. SAPK/JNK activation requires the phosphorylation of Thr and Tyr residues in its Thr-Pro-Tyr motif, and SEK1 (MKK4) and MKK7 (SEK2) have been identified as the upstream MAPK kinases. Here we examined the activation and phosphorylation sites of SAPK/JNK and differentiated the contribution of SEK1 and MKK7alpha1, -gamma1, and -gamma2 isoforms to the MAPK activation. In SEK1-deficient mouse embryonic stem cells, stress-induced SAPK/JNK activation was markedly impaired, and this defect was accompanied with a decreased level of the Tyr phosphorylation. Analysis in HeLa cells co-transfected with the two MAPK kinases revealed that the Thr and Tyr of SAPK/JNK were independently phosphorylated in response to heat shock by MKK7gamma1 and SEK1, respectively. However, MKK7alpha1 failed to phosphorylate the Thr of SAPK/JNK unless its Tyr residue was phosphorylated by SEK1. In contrast, MKK7gamma2 had the ability to phosphorylate both Thr and Tyr residues. In all cases, the dual phosphorylation of the Thr and Tyr residues was essentially required for the full activation of SAPK/JNK. These data provide the first evidence that synergistic activation of SAPK/JNK requires both phosphorylation at the Thr and Tyr residues in living cells and that the preference for the Thr and Tyr phosphorylation was different among the members of MAPK kinases.  相似文献   

4.
5.
Defining context specific requirements for proteins and pathways is a major challenge in the study of signal transduction. For example, the stress-activated protein kinase (SAPK) pathways are comprised of families of closely related transducers that are activated in a variety of tissues and contexts during development and organismal homeostasis. Consequently, redundant and pleiotropic effects have hampered a complete understanding of the individual contributions of transducers in distinct contexts. Here, we report on the function of a context-specific regulatory phosphorylation site, PXSP, in the Drosophila mixed lineage kinase protein, Slpr, a mitogen-activated protein kinase kinase kinase (MAP3K) in the Jun Kinase (JNK) pathway. Genetic analysis of the function of non-phosphorylatable (PXAP) and phosphomimetic mutant (PXEP) Slpr transgenes in several distinct contexts revealed minimal effects in JNK-dependent tissue closure processes but differential requirements in heat stress response. In particular, PXAP expression resulted in sensitivity of adults to sustained heat shock, like p38 and JNK pathway mutants. In contrast, PXEP overexpression conferred some resistance. Indeed, phosphorylation of the PXSP motif is enriched under heat shock conditions and requires in part, the p38 kinases for the enrichment. These data suggest that coordination of signaling between p38 and Slpr serves to maintain JNK signaling during heat stress. In sum, we demonstrate a novel role for JNK signaling in the heat shock response in flies and identify a posttranslational modification on Slpr, at a conserved site among MAP3K mixed lineage kinase family members, which bolsters stress resistance with negligible effects on JNK-dependent developmental processes.  相似文献   

6.
BACKGROUND: Although many teratogens are known to activate apoptotic pathways culminating in abnormal development, little is known about how the embryo transduces a teratogenic exposure into specific responses. Signal reception and transduction are regulated by a number of signal transduction pathways, including the extracellular signal-regulated protein kinases (ERKs), c-Jun N-terminal kinases (JNKs) and the stress-activated protein kinase, p38. METHODS: To analyze the effects of teratogens on MAP kinases, we used whole embryo culture, Western blot analyses, and antibodies recognizing inactive or active MAP kinases, or both. RESULTS: We show that heat shock (HS) induces a rapid, strong, but transient activation of ERK, JNK, and p38 with maximal activation occurring within 30 min of the heat shock. By contrast, cyclophosphamide (CP) and staurosporine (ST) failed to activate ERK or JNK during the time period studied (7. 5 hr). ST and CP did induce a low but reproducible activation of p38 beginning at around 3 hr and 5 hr, respectively, after the initiation of exposure. Previous work has shown that heat shock induces elevated cell death in the embryo, primarily in the developing neuroepithelium, but not in the embryonic heart. Thus, we also compared the activation of these three MAP kinase pathways in heads, hearts, and trunks isolated from day 9 embryos exposed to 43 degrees C for 15 min. The results show that ERK, JNK, and p38 are activated in heads, hearts, and trunks. CONCLUSIONS: Our results show that day 9 embryos do activate MAP kinase signaling pathways in response to teratogenic exposures; however, activation of a particular pathway does not appear to be required for teratogen-induced apoptosis.  相似文献   

7.
The cytokine tumor necrosis factor alpha (TNF-alpha) stimulates the NF-kappaB, SAPK/JNK, and p38 mitogen-activated protein (MAP) kinase pathways by recruiting RIP1 and TRAF2 proteins to the tumor necrosis factor receptor 1 (TNFR1). Genetic studies have revealed that RIP1 links the TNFR1 to the IkappaB kinase (IKK) complex, whereas TRAF2 couples the TNFR1 to the SAPK/JNK cascade. In transfection studies, RIP1 and TRAF2 stimulate p38 MAP kinase activation, and dominant-negative forms of RIP1 and TRAF2 inhibit TNF-alpha-induced p38 MAP kinase activation. We found TNF-alpha-induced p38 MAP kinase activation and interleukin-6 (IL-6) production impaired in rip1(-/-) murine embryonic fibroblasts (MEF) but unaffected in traf2(-/-) MEF. Yet, both rip1(-/-) and traf2(-/-) MEF exhibit a normal p38 MAP kinase response to inducers of osmotic shock or IL-1alpha. Thus, RIP1 is a specific mediator of the p38 MAP kinase response to TNF-alpha. These studies suggest that TNF-alpha-induced activation of p38 MAP kinase and SAPK/JNK pathways bifurcate at the level of RIP1 and TRAF2. Moreover, endogenous RIP1 associates with the MAP kinase kinase kinase (MAP3K) MEKK3 in TNF-alpha-treated cells, and decreased TNF-alpha-induced p38 MAP kinase activation is observed in Mekk3(-/-) cells. Taken together, these studies suggest a mechanism whereby RIP1 may mediate the p38 MAP kinase response to TNF-alpha, by recruiting the MAP3K MEKK3.  相似文献   

8.
9.
The heat shock response maintains cellular homeostasis following sublethal injury. Heat shock proteins (Hsps) are induced by thermal, oxyradical, and inflammatory stress, and they chaperone denatured intracellular proteins. Hsps also chaperone signal transduction proteins, modulating signaling cascades during repeated stress. Gastroesophageal reflux disease (GERD) affects 7% of the US population, and it is linked to prolonged esophageal acid exposure. GERD is characterized by enhanced and selective leukocyte recruitment from esophageal microvasculature, implying activation of microvascular endothelium. We investigated whether phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK regulate Hsp induction in primary cultures of human esophageal microvascular endothelial cells (HEMEC) in response to acid exposure (pH 4.5). Inhibitors of signaling pathways were used to define the contribution of PI3K/Akt and MAPKs in the heat shock response and following acid exposure. Acid significantly enhanced phosphorylation of Akt and MAPKs in HEMEC as well as inducing Hsp27 and Hsp70. The PI3K inhibitor LY-294002, and Akt small interfering RNA inhibited Akt activation and Hsp70 expression in HEMEC. The p38 MAPK inhibitor (SB-203580) and p38 MAPK siRNA blocked Hsp27 and Hsp70 mRNA induction, suggesting a role for MAPKs in the HEMEC heat shock response. Thus acidic pH exposure protects HEMEC through induction of Hsps and activation of MAPK and PI3 kinase pathway. Acidic exposure increased HEMEC expression of VCAM-1 protein, but not ICAM-1, which may contribute to selective leukocyte (i.e., eosinophil) recruitment in esophagitis. Activation of esophageal endothelial cells exposed to acidic refluxate may contribute to GERD in the setting of a disturbed mucosal squamous epithelial barrier (i.e., erosive esophagitis, peptic ulceration). esophagus; esophagitis; gastroesophageal reflux disease; microvasculature; phosphatidylinositol 3-kinase/Akt; VCAM-1  相似文献   

10.
The abundance and activity of three subgroups of mitogen-activated protein (MAP) kinases, the extracellular signal regulated kinase 1 (ERK1), stress-activated protein kinase 1/ Jun N-terminal kinase (SAPK1), and stress-activated protein kinase 2/ p38 (SAPK2), were measured in gill epithelium of the euryhaline teleost Fundulus heteroclitus exposed for 1 h to 4 weeks to hyper- and hyposmotic stress. The abundance of ERK1, SAPK1 and SAPK2 was analyzed by standard Western immunodetection. MAP kinase activity is a function of phosphorylation and was measured using phospho-specific and MAP kinase subgroup-specific antibodies. The abundance of the 63 kDa fish isoform of SAPK2 increases significantly during hyper- but not hyposmotic stress while ERK1 and SAPK1 protein levels remain unchanged during both types of osmotic stress. In contrast to this small effect of osmotic stress on MAP kinase abundance, the activity of all MAP kinases decreases significantly in response to hyperosmotic stress and increases significantly during hyposmotic stress. These results demonstrate for the first time that the activity of all major MAP kinases is osmoregulated in gill epithelium of euryhaline fish. Based on these results we conclude that MAP kinases are important components of salinity adaptation and participate in osmosensory signaling pathways in gill epithelium of euryhaline fishes.  相似文献   

11.
12.
Collagenase-1 (matrix metalloproteinase-1, MMP-1) is expressed by several types of cells, including fibroblasts, and apparently plays an important role in the remodeling of collagenous extracellular matrix in various physiologic and pathologic situations. Here, we have examined the molecular mechanisms of the activation of fibroblast MMP-1 gene expression by a naturally occurring non-phorbol ester type tumor promoter okadaic acid (OA), a potent inhibitor of serine/threonine protein phosphatase 2A. We show that in fibroblasts OA activates three distinct subgroups of mitogen activated protein kinases (MAPKs): extracellular signal-regulated kinase 1,2 (ERK 1,2), c-Jun N-terminal-kinase/stress-activated protein kinase (JNK/SAPK) and p38. Activation of MMP-1 promoter by OA is entirely blocked by overexpression of dual-specificity MAPK phosphatase CL100. In addition, expression of kinase-deficient forms of ERK 1,2, SAPKβ, p38, or JNK/SAPK kinase SEK1 strongly inhibited OA-elicited activation of MMP-1 promoter. OA-elicited enhancement of MMP-1 mRNA abundance was also strongly prevented by two chemical MAPK inhibitors: PD 98059, a specific inhibitor of the activation of ERK1,2 kinases MEK1,2; and SB 203580, a selective inhibitor of p38 activity. Results of this study show that MMP-1 gene expression in fibroblasts is coordinately regulated by ERK1,2, JNK/SAPK, and p38 MAPKs and suggest an important role for the stress-activated MAPKs JNK/SAPK and p38 in the activation of MMP-1 gene expression. Based on these observations, it is conceivable that specific inhibition of stress-activated MAPK pathways may serve as a novel therapeutic target for inhibiting degradation of collagenous extracellular matrix.  相似文献   

13.
Previous studies demonstrated that in vitro the protein kinase TAO2 activates MAP/ERK kinases (MEKs) 3, 4, and 6 toward their substrates p38 MAP kinase and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK). In this study, we examined the ability of TAO2 to activate stress-sensitive MAP kinase pathways in cells and the relationship between activation of TAO2 and potential downstream pathways. Over-expression of TAO2 activated endogenous JNK/SAPK and p38 but not ERK1/2. Cotransfection experiments suggested that TAO2 selectively activates MEK3 and MEK6 but not MEKs 1, 4, or 7. Coimmunoprecipitation demonstrated that endogenous TAO2 specifically associates with MEK3 and MEK6 providing one mechanism for preferential recognition of MEKs upstream of p38. Sorbitol, and to a lesser extent, sodium chloride, Taxol, and nocodazole increased TAO2 activity toward itself and kinase-dead MEKs 3 and 6. Activation of endogenous TAO2 during differentiation of C2C12 myoblasts paralleled activation of p38 but not JNK/SAPK, consistent with the idea that TAO2 is a physiological regulator of p38 under certain circumstances.  相似文献   

14.
15.
16.
Mitogen-activated protein kinase (MAPK) signaling was examined in malignant melanoma cells exposed to hypoxia. Here we demonstrate that hypoxia induced a strong activation of the c-Jun NH2-terminal kinase (JNK), also termed stress-activated protein kinase (SAPK), in the melanoma cell line 530 in vitro. Other members of the MAPK family, e.g., extracellular signal-regulated kinase and p38, remained unaffected by the hypoxic stimulus. Activated JNK/SAPK could also be observed in the vicinity of hypoxic tumor areas in melanoma metastases as detected by immunohistochemistry. Functional analysis of JNK/SAPK activation in the melanoma cell line 530 revealed that activation of JNK/SAPK is involved in hypoxia-mediated tumor cell apoptosis. Both a dominant negative mutant of JNK/SAPK (SAPKbeta K-->R) and a dominant negative mutant of the immediate upstream activator of JNK/SAPK, SEK1 (SEK1 K-->R), inhibited hypoxia-induced apoptosis in transient transfection studies. In contrast, overexpression of the wild-type kinases had a slight proapoptotic effect. Inhibition of extracellular signal-regulated kinase and p38 pathways by the chemical inhibitors PD98058 and SB203580, respectively, had no effect on hypoxiainduced apoptosis. Under normoxic conditions, no influence on apoptosis regulation was observed after inhibition of all three MAPK pathways. In contrast to recent findings, JNK/SAPK activation did not correlate with Fas or Fas ligand (FasL) expression, suggesting that the Fas/FasL system is not involved in hypoxia-induced apoptosis in melanoma cells. Taken together, our data demonstrate that hypoxia-induced JNK/SAPK activation appears to play a critical role in apoptosis regulation of melanoma cells in vitro and in vivo, independent of the Fas/FasL system.  相似文献   

17.
18.
Mitogen-activated protein (MAP) kinases signal to proteins that could modify smooth muscle contraction. Caldesmon is a substrate for extracellular signal-related kinases (ERK) and p38 MAP kinases in vitro and has been suggested to modulate actin-myosin interaction and contraction. Heat shock protein 27 (HSP27) is downstream of p38 MAP kinases presumably participating in the sustained phase of muscle contraction. We tested the role of caldesmon and HSP27 phosphorylation in the contractile response of vascular smooth muscle by using inhibitors of both MAP kinase pathways. In intact smooth muscle, PD-098059 abolished endothelin-1 (ET-1)-stimulated phosphorylation of ERK MAP kinases and caldesmon, but p38 MAP kinase activation and contractile response remained unaffected. SB-203580 reduced muscle contraction and inhibited p38 MAP kinase and HSP27 phosphorylation but had no effect on ERK MAP kinase and caldesmon phosphorylation. In permeabilized muscle fibers, SB-203580 and a polyclonal anti-HSP27 antibody attenuated ET-1-dependent contraction, whereas PD-098059 had no effect. These results suggest that ERK MAP kinases phosphorylate caldesmon in vivo but that activation of this pathway is unnecessary for force development. The generation of maximal force may be modulated by the p38 MAP kinase/HSP27 pathway.  相似文献   

19.
HPK1, a hematopoietic protein kinase activating the SAPK/JNK pathway.   总被引:11,自引:1,他引:10       下载免费PDF全文
In mammalian cells, a specific stress-activated protein kinase (SAPK/JNK) pathway is activated in response to inflammatory cytokines, injury from heat, chemotherapeutic drugs and UV or ionizing radiation. The mechanisms that link these stimuli to activation of the SAPK/JNK pathway in different tissues remain to be identified. We have developed and applied a PCR-based subtraction strategy to identify novel genes that are differentially expressed at specific developmental points in hematopoiesis. We show that one such gene, hematopoietic progenitor kinase 1 (hpk1), encodes a serine/threonine kinase sharing similarity with the kinase domain of Ste20. HPK1 specifically activates the SAPK/JNK pathway after transfection into COS1 cells, but does not stimulate the p38/RK or mitogen-activated ERK signaling pathways. Activation of SAPK requires a functional HPK1 kinase domain and HPK1 signals via the SH3-containing mixed lineage kinase MLK-3 and the known SAPK activator SEK1. HPK1 therefore provides an example of a cell type-specific input into the SAPK/JNK pathway. The developmental specificity of its expression suggests a potential role in hematopoietic lineage decisions and growth regulation.  相似文献   

20.
Shi Y  Gaestel M 《Biological chemistry》2002,383(10):1519-1536
Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved enzymes which connect cell-surface receptors to regulatory targets within cells and convert receptor signals into various outputs. In mammalian cells, four distinct MAPKs have been identified: the extracellular signal-related kinases (ERK)-1/2, the c-jun N-terminal kinases or stress-activated protein kinases 1 (JNK1/2/3, or SAPK1s), the p38 MAPKs (p38 alpha/beta/gamma/delta, or SAPK2s), and the ERK5 or big MAP kinase 1 (BMK1). The p38 MAPK cascade is activated by stress or cytokines and leads to phosphorylation of its central elements, the p38 MAPKs. Downstream of p38 MAPKs there is a diversification and extensive branching of signalling pathways. For that reason, we will focus in this review on the different signalling events that are triggered by p38 activity, and analyse how these events contribute to specific gene expression and cellular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号