首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 190 毫秒
1.
The syntheses of 10,11-dihydrobenz[a]anthracene 8,9-oxide, benz[a]anthracene 8,9-oxide and 9-hydroxybenz[a]anthracene are described, together with those of a number of related compounds. The epoxides react both chemically and enzymically with water to yield the corresponding dihydrodiols and with reduced glutathione to form glutathione conjugates, and they react chemically with N-acetylcysteine to yield the corresponding mercapturic acids. 8,9-Dihydro-8,9-dihydroxybenz[a]anthracene, formed enzymically from benz[a]anthracene 8,9-oxide, was identical with a dihydrodiol formed when benz[a]anthracene was metabolized by rat liver homogenates. Similarly 10,11-dihydrobenz[a]anthracene 8,9-oxide yielded a dihydrodiol identical with the product formed when 10,11-dihydrobenz[a]anthracene was metabolized.  相似文献   

2.
The syntheses of 7,12-dimethylbenz[a]anthracene 5,6-oxide, 7-acetoxymethyl-12-methylbenz[a]anthracene 5,6-oxide and a product that appears to be mainly 7-hydroxymethyl-12-methylbenz[a]anthracene 5,6-oxide are described. The compounds readily rearranged to phenols in the presence of mineral acid, and 7,12-dimethylbenz[a]anthracene 5,6-oxide and its 7-hydroxymethyl derivative reacted slowly with water to yield trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a] anthracene and trans-5,6-dihydro-5,6-dihydroxy-7-hydroxymethyl-12-methylbenz [a]anthracene respectively. Both epoxides were converted enzymically by rat liver microsomal fractions and homogenates into the related trans-dihydrodiols. The epoxides reacted chemically with GSH to form conjugates that were identical with the conjugates formed when the epoxides were incubated with rat liver homogenates. The GSH conjugates were more stable to acid than conjugates derived from other arene oxides. In the alkylation of 4-(p-nitrobenzyl)pyridine, 7,12-dimethyl-benz[a]anthracene 5,6-oxide was more active than the 5,6-oxides of 7-methylbenz[a]-anthracene and benz[a]anthracene.  相似文献   

3.
Products that appeared to be mainly benzo[a]pyrene 7,8-oxide and benzo[a]pyrene 9,10-oxide were synthesized and their chemical and biochemical properties were investigated. The oxides were unstable and readily rearranged to phenols. They were converted by rat liver homogenates and microsomal preparations into phenols and dihydrodiols, but glutathione conjugates were not formed in appreciable amounts. The dihydrodiols formed from benzo[a]pyrene 7,8- and 9,10-oxide by rat liver microsomal preparations were identical in their chromatographic and spectrographic properties with dihydrodiols formed when benzo[a]pyrene was metabolized by rat liver homogenates. 9,10-Dihydrobenzo[a]pyrene 7,8-oxide and 7,8-dihydrobenzo[a]pyrene 9,10-oxide were also synthesized. They were converted by rat liver homogenates and microsomal preparations into the related cis- and trans-dihydroxy compounds. Glutathione conjugates were formed from the oxides by rat liver homogenates. Both 7,8- and 9,10-dihydrobenzo[a]pyrene were metabolized by rat liver homogenates to mainly the trans-isomers of the related dihydroxy compounds. In experiments with boiled homogenates, the benzo[a]pyrene oxides were converted into phenols, whereas the dihydrobenzo[a]pyrene oxides yielded small amounts of the related dihydroxy compounds.  相似文献   

4.
The formation of trans-dihydrodiols from dibenz[a,c]anthracene, dibenz[a,h]anthracene and chrysene by chemical oxidation in an ascorbic acid-ferrous sulphate-EDTA system and by rat-liver microsomal fractions has been studied using a combination of thin-layer (TLC) and high pressure liquid chromatography (HPLC) to separate the mixtures of isomeric dihydrodiols. The 1,2- and 3,4-dihydrodiols of dibenz[a,c]anthracene, the 1,2-,3,4- and 5,6-dihydrodiols of dibenz[a,h]anthracene and the 1,2-, 3,4- and 5,6-dihydrodiols of chrysene were formed in chemical oxidations. These dihydrodiols were also formed when the three parent hydrocarbons were metabolized by rat-liver microsomal fractions and, in addition, dibenz[a,c]anthracene yielded the 10,11-dihydrodiol. The 1,2- and 3,4-dihydrodiols of dibenz[a,c]anthracene have not been reported previously either as metabolites of the hydrocarbon or as products of chemical syntheses and the 5,6-dihydrodiol of chrysene was not detected in earlier metabolic studies.  相似文献   

5.
The metabolism of 3H-labelled 7,12-dimethylbenz[a]anthracene (DMBA) and of 7-hydroxymethyl-12-methylbenz[a]anthracene (7-OHM-12-MBA) into solvent- and water-soluble and protein-bound derivatives has been examined in rat liver and adrenal homogenates and in rat adrenocortical cells in culture. Although the overall extents of metabolism of the substrates by the two types of homogenate were similar, there was twice as much binding to protein in incubations with the 7-hydroxymethyl derivative. Rat adrenal cells in culture metabolized DMBA more extensively than 7-OHM-12-MBA and converted much more of the parent hydrocarbon into water-soluble derivatives. Both hydrocarbons were metabolized to yield dihydrodiols that were separated and identified by high performance liquid chromatography (HPLC). The 8,9-dihydrodiol was the major dihydrodiol formed from DMBA but, with 7-OHM-12-MBA as substrate, metabolism was diverted to the 10,11- and 3,4-positions in adrenal and hepatic preparations respectively. The viability of rat adrenocortical cells in culture, as measured by trypan blue exclusion, did not appear to be affected by treatment with DMBA, 7-OHM-12-MBA, the sulphate ester of 7-OHM-12-MBA or by 3,4-dihydro-3,4-dihydroxy-7-hydroxymethyl-12-methylbenz[a]anthracene.  相似文献   

6.
Polar, ethyl acetate soluble metabolites formed in incubations of dibenz[a,c]-anthracene (DB[a,c]A), dibenz[a,h]anthracene (DB[a,h]A) and the related DB[a,h]A 3,4-diol and dibenz[a,j]anthracene (DB[a,j]A) with 3-methylcholanthrene (3-MC)-induced rat liver microsomal preparations have been separated by HPLC and examined using fluorescence, UV and NMR spectroscopy. Metabolites with spectral properties consistant with their identification as the 3,4:8,9-bis-diol of DB[a,j]A and a 1,2,3,4,12,13-hexol derived from DB[a,c]A were found. DB[a,h]A was metabolized to three polar products identified as the 3,4:10,11-bis-diol and the related 1,2,3,4,8,9- and 1,2,3,4,10,11-hexols, which were also formed, together with the related 1,2,3,4-tetrol, from the DB[a,h]A 3,4-diol. The possible role of bis-diols in the metabolic activation of these three dibenzanthracenes is discussed.  相似文献   

7.
Metabolism of 4-methylbenz[a]anthracene by the fungus Cunninghamella elegans was studied. C. elegans metabolized 4-methylbenz[a]anthracene primarily at the methyl group, this being followed by further metabolism at the 8,9- and 10,11-positions to form trans-8,9-dihydro-8,9-dihydroxy-4-hydroxymethylbenz[a]anthracene and trans-10,11-dihydro-10,11-dihydroxy-4-hydroxymethylbenz[a]anthracene. There was no detectable trans-dihydrodiol formed at the methyl-substituted double bond (3,4-positions) or at the 'K' region (5,6-positions). The metabolites were isolated by reversed-phase high-pressure liquid chromatography and characterized by the application of u.v.-visible-absorption-, 1H-n.m.r.- and mass-spectral techniques. The 4-hydroxymethylbenz[a]anthracene trans-8,9- and -10,11-dihydrodiols were optically active. Comparison of the c.d. spectra of the trans-dihydrodiols formed from 4-methylbenz[a]anthracene by C. elegans with those of the corresponding benz[a]anthracene trans-dihydrodiols formed by rat liver microsomal fraction indicated that the major enantiomers of the 4-hydroxymethylbenz[a]anthracene trans-8,9-dihydrodiol and trans- 10,11-dihydrodiol formed by C. elegans have S,S absolute stereochemistries, which are opposite to those of the predominantly 8R,9R- and 10R,11R-dihydrodiols formed by the microsomal fraction. Incubation of C. elegans with 4-methylbenz[a]anthracene under 18O2 and subsequent mass-spectral analysis of the metabolites indicated that hydroxylation of the methyl group and the formation of trans-dihydrodiols are catalysed by cytochrome P-450 mono-oxygenase and epoxide hydrolase enzyme systems. The results indicate that the fungal mono-oxygenase-epoxide hydrolase enzyme systems are highly stereo- and regio-selective in the metabolism of 4-methylbenz[a]anthracene.  相似文献   

8.
Experiments were performed to investigate the effects of 3 polycyclic aromatic hydrocarbons, benz[a]anthracene, dibenz[a,c]anthracene and dibenz[a,h]anthracene and K-regio epoxides and some of their related dihydrodiols on the chromosomes of Chinese hamster ovary cells in vitro. Of the 3 hydrocarbons only benz[a]anthracene showed any activity in inducing sister-chromatid exchanges. The K-region epoxide and the 3,4-dihydrodiol have been found to be more active than the corresponding K-region or the other non K-region dihydrodiols derived from benz[a]anthracene. Athough dibenz[a,c]anthracene was almost inactive, the K-region 5,6-epoxide and all 3 possible dihydrodiols, the 1,2-, 3,4- and 10,11-diols were active in inducing increased numbers of sister-chromatid exchanges in the chromosomes of these cells. The 3,4-dihydrodiol of dibenz[a,h]anthrecene was also active in inducing sister-chromatid exchanges whereas the 1,2- and 5,6-dihydrodiols were only weakly active. This study provides some support for the suggestiion that the activation of these 3 hydrocarbons proceeds by the metabolic conversion of non K-region dihydrodiols into vicinal diol-epoxides.  相似文献   

9.
Polar, ethyl acetate soluble metabolites formed in incubations of dibenz[a,c]-anthracene (DB[a,c]A), dibenz[a,h]anthracene (DB[a,h]A) and the related DB[a,h]A 3,4-diol and dibenz[a,j]anthracene (DB[a,j]A) with 3-methylcholanthrene (3-MC)-induced rat liver microsomal preparations have been separated by HPLC and examined using fluorescence, UV and NMR spectroscopy. Metabolites with spectral properties consistant with their identification as the 3,4:8,9-bis-diol of DB[a,j]A and a 1,2,3,4,12,13-hexol derived from DB[a,c]A were found. DB[a,h]A was metabolized to three polar products identified as the 3,4:10,11-bis-diol and the related 1,2,3,4,8,9- and 1,2,3,4,10,11-hexols, which were also formed, together with the related 1,2,3,4-tetrol, from the DB[a,h]A 3,4-diol. The possible role of bis-diols in the metabolic activation of these three dibenzanthracenes is discussed.  相似文献   

10.
The principal nucleoside-hydrocarbon adducts present in hydrolysates of RNA and DNA isolated from hamster embryo cells treated with benz[a]anthracene (BA) were examined by chromatography on Sephadex LH 20 and by high pressure liquid chromatography (HPLC) on Spherisorb 5 ODS. The results extend the previous finding that a non-'bay-region' diol-epoxide, anti-BA-8,9-diol 10,11-oxide (r-8,t-9-dihydroxy-t-10,11-oxy-8,9,10,11-tetrahydrobenz[a] anthracene) is involved in the binding of BA to cellular nucleic acids and show that this diol-epoxide most probably reacts with guanosine and adenosine in RNA and with deoxyguanosine in DNA. The results also show that a 'bay-region' diol-epoxide anti-BA-3,4-diol 1,2-oxide (t-3,-4-dihydroxy-t-1,2-oxy-1,2,3,4-tetrahydrobenz[a]anthracene, which is thought to be involved in the binding of benz[a]anthracene, which is thought to be involved in the binding of benz[a]anthracene to DNA in some situations, reacts mainly with deoxyguanosine.  相似文献   

11.
Syncephalastrum racemosum UT-70 and Cunninghamella elegans ATCC 36112 metabolized 7,12-dimethylbenz[a]anthracene (7,12-DMBA) to hydroxymethyl metabolites as well as 7-hydroxymethyl-12-methylbenz[a]anthracene trans-3,4-, -5,6-, -8,9-, and -10,11-dihydrodiols. The 7,12-DMBA metabolites were isolated by reversed-phase high-performance liquid chromatography and identified by their UV-visible absorption, mass, and nuclear magnetic resonance spectral characteristics. A comparison of the circular dichroism spectra of the K-region (5,6-position) dihydrodiol of both fungal strains with those of the 7,12-DMBA 5S,6S-dihydrodiol formed from 7,12-DMBA by rat liver microsomes indicated that the major enantiomer of the 7-hydroxymethyl-12-methylbenz[a]anthracene trans-5,6-dihydrodiol formed by both fungal strains had a 5R,6R absolute stereochemistry. Direct resolution of the fungal trans-5,6-dihydrodiols by chiral stationary-phase high-performance liquid chromatography indicated that the ratios of the R,R and S,S enantiomers were 88:12 and 77:23 for S. racemosum and C. elegans, respectively. These results indicate that the fungal metabolism of 7,12-DMBA at the K region (5,6-position) is highly stereoselective and different from that reported for mammalian enzyme systems.  相似文献   

12.
Syncephalastrum racemosum UT-70 and Cunninghamella elegans ATCC 36112 metabolized 7,12-dimethylbenz[a]anthracene (7,12-DMBA) to hydroxymethyl metabolites as well as 7-hydroxymethyl-12-methylbenz[a]anthracene trans-3,4-, -5,6-, -8,9-, and -10,11-dihydrodiols. The 7,12-DMBA metabolites were isolated by reversed-phase high-performance liquid chromatography and identified by their UV-visible absorption, mass, and nuclear magnetic resonance spectral characteristics. A comparison of the circular dichroism spectra of the K-region (5,6-position) dihydrodiol of both fungal strains with those of the 7,12-DMBA 5S,6S-dihydrodiol formed from 7,12-DMBA by rat liver microsomes indicated that the major enantiomer of the 7-hydroxymethyl-12-methylbenz[a]anthracene trans-5,6-dihydrodiol formed by both fungal strains had a 5R,6R absolute stereochemistry. Direct resolution of the fungal trans-5,6-dihydrodiols by chiral stationary-phase high-performance liquid chromatography indicated that the ratios of the R,R and S,S enantiomers were 88:12 and 77:23 for S. racemosum and C. elegans, respectively. These results indicate that the fungal metabolism of 7,12-DMBA at the K region (5,6-position) is highly stereoselective and different from that reported for mammalian enzyme systems.  相似文献   

13.
1. 7- and 12-Methylbenz[a]anthracene were converted by rat-liver homogenates into the corresponding hydroxymethyl derivatives, products that are probably the 8,9-dihydro-8,9-dihydroxy and the 5,6-dihydro-5,6-dihydroxy derivatives, and a number of phenolic products. 2. Both hydrocarbons were converted into glutathione conjugates; that from 7-methylbenz[a]anthracene was also formed, together with 5,6-dihydro-5,6-dihydroxy- and 5-hydroxy-benz[a]anthracene, from 5,6-epoxy-5,6-dihydro-7-methylbenz[a]anthracene. 3. 7- and 12-Hydroxymethyl-benz[a]anthracene were converted into products that are probably 8,9-dihydro-8,9-dihydroxy derivatives, and into phenols. 4. The preparation of a number of derivatives of the hydrocarbons is described. 5. The oxidation of the hydrocarbons with lead tetra-acetate was investigated.  相似文献   

14.
When benz[a] anthracene was oxidised in a reaction mixture containing ascorbic acid, ferrous sulphate and EDTA, the non-K-region dihydrodiols, trans-1,2-dihydro-1,2-dihydroxybenz[a] anthracene and trans-3,4-dihydro-3,4-dihydroxybenz[a] anthracene together with small amounts of the 8,9- and 10,11-dihydrodiols were formed. When oxidised in a similar system, 7,12-dimethylbenz[a] anthracene yielded the K-region dihydrodiol, trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a] anthracene and the non-K-region dihydrodiols, trans-3,4-dihydro-3,4-dihydroxy-7,12-dimethylbenz[a] anthracene, trans-8,9-dihydro-8,9-dihydroxy-7,12-dimethylbenz[a] anthracene, trans-10,11-dihydro-10,11-dihydroxy-7,12-dimethylbenz[a] anthracene and a trace of the 1,2-dihydrodiol. The structures and sterochemistry of the dihydrodiols were established by comparisons of their UV spectra and chromatographic characteristics using HPLC with those of authentic compounds or, when no authentic compounds were available, by UV, NMR and mass spectral analysis. An examination by HPLC of the dihydrodiols formed in the metabolism, by rat-liver microsomal fractions, of benz[a] anthracene and 7,12-dimethylbenz[a] anthracene was carried out. The metabolic dihydriols were identified by comparisons of their chromatographic and UV or fluorescence spectral characteristics with compounds of known structures. The principle metabolic dihydriols formed from both benz[a] anthracene and 7,12-dimethylbenz[a] anthracene were the trans-5,6- and trans-8,9-dihydrodiols. The 1,2- and 10,11-dihydrodiols were identified as minor products of the metabolism of benz [a] anthracene and the tentative identification of the trans-3,4-dihydriol as a metabolite was made from fluorescence and chromatographic data. The minor metabolic dihydriols formed from 7,12-dimethylbenz[a] anthracene were the trans-3,4-dihydrodiol and the trans-10,11-dihydriol but the trans-1,2-dihydrodiol was not detected in the present study.  相似文献   

15.
The fungal metabolism of 7-methylbenz[a]anthracene (7-MBA) and 7-hydroxymethylbenz[a]anthracene (7-OHMBA) was studied. 7-MBA was metabolized by Cunninghamella elegans to form 7-OHMBA-trans-8,9-dihydrodiol and 7-OHMBA-trans-3,4-dihydrodiol as the predominant metabolites. Other metabolites were identified as 7-OHMBA, 7-MBA-trans-8,9-dihydrodiol and 7-MBA-trans-3,4-dihydrodiol, and 7-MBA-8,9,10,11-tetraol. Incubation of 7-OHMBA with C. elegans cells indicated that 7-OHMBA-trans-8,9-dihydrodiol and 7-OHMBA-trans-3,4-dihydrodiol were major metabolites. The metabolism of 7-MBA by rat liver microsomes from 3-methylcholanthrene-treated rats showed that the metabolites were qualitatively similar to those formed by C. elegans, except additional dihydrodiol metabolites were formed at the 5,6 and 10,11 positions. The metabolites formed were isolated by high-performance liquid chromatography and identified by comparing their chromatographic, UV-visible absorption and mass spectral properties with those of reference compounds.  相似文献   

16.
The comparative metabolism of the carcinogenic pollutants 7H-dibenzo[c,g]-carbazole (DBC) and dibenz[a,j]acridine (DBA) was investigated in vitro using 3-methylcholanthrene (3MC) induced Sprague-Dawley rat and Hsd:ICR(Br) mouse liver microsomal preparations with benzo[a]pyrene (BaP) as the positive control. Metabolites were isolated and separated by HPLC and identified by spectroscopic and co-chromatographic techniques using synthetic standards. The major metabolites of DBC were the phenols: the 5-OH-DBC, 3-OH-DBC, and 2-OH-DBC. Traces of 1-OH-DBC were also found yet no dihydrodiols were identified. The major metabolites of DBA were the 3,4-diol-DBA and 5,6-diol-DBA, 1,2-diol-DBA, DBA-5,6-oxide and 4-OH-DBA. Treatment of both mice and rats with 3MC resulted in significant (P less than or equal to 0.05) increases relative to control in the microsomal metabolism of DBA to dihydrodiol and phenol metabolites, similar to that observed for BaP. 3MC-induced rat liver microsomes significantly (P less than or equal to 0.05) increased DBC metabolism relative to control microsomes whereas DBC metabolism was not increased with 3MC-induced mouse liver microsomes. These data indicate that different enzymatic pathways are involved in the metabolic activation of DBC in the Hsd:ICR(Br) mouse and Sprague-Dawley rat.  相似文献   

17.
The mutagenic activities of trans-7,8-dihydro-7,8-dihydroxybenzo[a]-pyrene (BP 7,8-diol) and of trans-3,4-dihydroxy-7,12-dimethylbenz[a]-anthracene (DMBA 3,4-diol) towards S. typhimurium TA100 were measured in assays that were carried out on a micro-scale in liquid medium in the presence of microsomal fractions prepared from mouse skin or rat liver. In the presence of an NADPH-generating system, microsomal enzymes converted both diols into mutagens that were probably the respective 'bay-region' diol-epoxides. The rate of the enzyme-catalysed conversion of the BP 7,8-diol into mutagens by microsomal preparations from mouse epidermis was similar to that occurring with microsomes from rat liver. Pretreatment of mice by the topical application of benz[a]anthracene (BA) or 7,12-dimethylbenz[a]-anthracene (DMBA) increased the mutagenic activity of BP 7,8-diol mediated by mouse skin microsomal preparations by 2-fold and this was paralleled by a 4-fold increase in epidermal aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH) activity. The results are discussed in relation to the high susceptibility of mouse skin to polycyclic aromatic hydrocarbon (PAH) carcinogenesis.  相似文献   

18.
Rat liver dihydrodiol dehydrogenase (DDH, E.C. 1.3.1.20) has recently been shown to oxidize the highly carcinogenic benz[a]anthracene-3,4- dihydrodiol in an NADP(+)-dependent reaction to its corresponding catechol. The present study is a systematic investigation of the substrate specificity of the purified enzyme towards synthetic trans-dihydrodiol metabolites of phenanthrene, benz[a]anthracene, chrysene, dibenz[a, h]anthracene and benzo[a]pyrene. DDH exhibited a remarkable regiospecificity of enzymatic catalysis with regard to the site of the dihydrodiol moiety of the parent hydrocarbon. M-region- and, with lower efficiency, bay-region dihydrodiols were found to be good substrates of the enzyme with maximal velocities between 20-80 nmol/min per mg enzyme and Km values in the micromolar range. K-region dihydrodiols were not accepted as substrates. Dihydrodiols situated at the terminal ring of an anthracene-type structure such as benz[a]anthracene-8,9-dihydrodiol as well as the corresponding dihydrodiol epoxides were also not oxidized by DDH at measurable rates. The results provide evidence for a detoxifying role of DDH in the metabolism of the chemical carcinogens benz[a]anthracene, chrysene and dibenz[a, h]anthracene.  相似文献   

19.
The non-K-region benz[a]anthracene (BA) 8,9- and 10,11-epoxides were isolated by normal-phase high-performance liquid chromatography as rat liver microsomal metabolites of BA. The identities of these epoxides were established by ultraviolet and mass spectral analyses and were further validated by the microsomal epoxide hydrolase catalyzed conversion to BA trans-8,9-dihydrodiol and trans-10,11-dihydrodiol, respectively. Circular dichroism spectral analyses of the metabolically formed non-K-region epoxides and dihydrodiols and mass spectral analyses of metabolically formed 18O-labeled non-K-region dihydrodiols and their acid-catalyzed dehydration products indicated that BA (8R,9S)-epoxide and (10S,11R)-epoxide were the predominant enantiomers formed in the metabolism at the 8,9- and 10,11- aromatic double bonds of BA, respectively, by rat liver microsomes. This is the first example demonstrating the direct detection and stereoselective metabolic formation of non-K-region epoxides of a polycyclic aromatic hydrocarbon.  相似文献   

20.
Through application of the exciton chirality method, absolute stereochemistry has been assigned to the (+)-and (-)-enantiomers of four of the five metabolically possible trans-dihydrodiols of the polycyclic hydrocarbon benzo[a]anthracene (BA). The (+)- and (-)-enantiomers of each of these dihydrodiols can be separated as their diastereomeric bis-esters with (-)-alpha-methoxy-alpha-trifluoromethylphenylacetic acid by high pressure liquid chromatography (HPLC). BA 3,4-, 5,6-, 8,9- and 10,11-dihydrodiol are formed in 38%, 36%, 78% and 66% enantiometric purity, respectively, by liver microsomes from phenobarbital-treated rats, whereas the liver microsomes from 3-methylcholanthrene(MC)-treated rats form BA 5,6-, 8,9- and 10,11-dihydrodiols with higher optical purity (62%, 96% and 96%, respectively). BA 3,4-dihydrodiol is formed from (+/-)-BA 3,4-oxide by microsomal epoxide hydrase in very high enantiometric purity (78%). The major enantiomer of the BA dihydrodiols formed by liver enzymes has R,R absolute stereochemistry in each case. In parallel with previous studies on the metabolism of benzo[a]pyrene, the more tumorigenic (-)-enantiomer is the predominant isomer of BA 3,4-dihydrodiol formed by liver microsomes from BA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号