首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
TRIPLES is a web-accessible database of TRansposon-Insertion Phenotypes, Localization and Expression in Saccharomyces cerevisiae—a relational database housing nearly half a million data points generated from an ongoing study using large-scale transposon mutagenesis to characterize gene function in yeast. At present, TRIPLES contains three principal data sets (i.e. phenotypic data, protein localization data and expression data) for over 3500 annotated yeast genes as well as several hundred non-annotated open reading frames. In addition, the TRIPLES web site provides online order forms linked to each data set so that users may request any strain or reagent generated from this project free of charge. In response to user requests, the TRIPLES web site has undergone several recent modifications. Our localization data have been supplemented with approximately 500 fluorescent micrographs depicting actual staining patterns observed upon indirect immunofluorescence analysis of indicated epitope-tagged proteins. These localization data, as well as all other data sets within TRIPLES, are now available in full as tab-delimited text. To accommodate increased reagent requests, all orders are now cataloged in a separate database, and users are notified immediately of order receipt and shipment. Also, TRIPLES is one of five sites incorporated into the new functional analysis tool Function Junction provided by the Saccharomyces Genome Database. TRIPLES may be accessed from the Yale Genome Analysis Center (YGAC) homepage at http://ygac.med.yale.edu.  相似文献   

2.
Gramene: a resource for comparative grass genomics   总被引:18,自引:0,他引:18       下载免费PDF全文
Gramene (http://www.gramene.org) is a comparative genome mapping database for grasses and a community resource for rice. Rice, in addition to being an economically important crop, is also a model monocot for understanding other agronomically important grass genomes. Gramene replaces the existing AceDB database ‘RiceGenes’ with a relational database based on Oracle. Gramene provides curated and integrative information about maps, sequence, genes, genetic markers, mutants, QTLs, controlled vocabularies and publications. Its aims are to use the rice genetic, physical and sequence maps as fundamental organizing units, to provide a common denominator for moving from one crop grass to another and is to serve as a portal for interconnecting with other web-based crop grass resources. This paper describes the initial steps we have taken towards realizing these goals.  相似文献   

3.
There has been a dramatic increase in the number of completely sequenced bacterial genomes during the past two years as a result of the efforts both of public genome agencies and the pharmaceutical industry. The availability of completely sequenced genomes permits more systematic analyses of genes, evolution and genome function than was otherwise possible. Using computational methods - which are used to identify genes and their functions including statistics, sequence similarity, motifs, profiles, protein folds and probabilistic models - it is possible to develop characteristic genome signatures, assign functions to genes, identify pathogenic genes, identify metabolic pathways, develop diagnostic probes and discover potential drug-binding sites. All of these directions are critical to understanding bacterial growth, pathogenicity and host-pathogen interactions.  相似文献   

4.
The mating biology of termites: a comparative review   总被引:1,自引:0,他引:1  
  相似文献   

5.

Background  

The last third of the 20th Century featured an accumulation of research findings that severely challenged the assumptions of the "Modern Synthesis" which provided the foundations for most biological research during that century. The foundations of that "Modernist" biology had thus largely crumbled by the start of the 21st Century. This in turn raises the question of foundations for biology in the 21st Century.  相似文献   

6.
7.
Introduction: Analysis of histone post-translational modifications (PTMs) by mass spectrometry (MS) has become a fundamental tool for the characterization of chromatin composition and dynamics. Histone PTMs benchmark several biological states of chromatin, including regions of active enhancers, active/repressed gene promoters and damaged DNA. These complex regulatory mechanisms are often defined by combinatorial histone PTMs; for instance, active enhancers are commonly occupied by both marks H3K4me1 and H3K27ac. The traditional bottom-up MS strategy identifies and quantifies short (aa 4–20) tryptic peptides, and it is thus not suitable for the characterization of combinatorial PTMs.

Areas covered: Here, we review the advancement of the middle-down MS strategy applied to histones, which consists in the analysis of intact histone N-terminal tails (aa 50–60). Middle-down MS has reached sufficient robustness and reliability, and it is far less technically challenging than PTM quantification on intact histones (top-down). However, the very few chromatin biology studies applying middle-down MS resulting from PubMed searches indicate that it is still very scarcely exploited, potentially due to the apparent high complexity of method and analysis.

Expert commentary: We will discuss the state-of-the-art workflow and examples of existing studies, aiming to highlight its potential and feasibility for studies of cell biologists interested in chromatin and epigenetics.  相似文献   


8.
The mouse has been a powerful force in elucidating the genetic basis of human physiology and pathophysiology. From its beginnings as the model organism for cancer research and transplantation biology to the present, when dissection of the genetic basis of complex disease is at the forefront of genomics research, an enormous and remarkable mouse resource infrastructure has accumulated. This review summarizes those resources and provides practical guidelines for their use, particularly in the analysis of quantitative traits.  相似文献   

9.
The leading experts in the development of phylogenetic systematics, Walter Zimmermann and Willi Hennig, formulated their research program in opposition to (neo-) idealistic morphology as expounded by authors such as Wilhelm Troll and Adolf Naef. Idealistic morphology was synonymous with systematic morphology for Naef, who wanted it to be strictly kept separate and independent of phylogenetics. Naef conceded, however, that the natural system researched by systematic morphology is to be causally explained by the theory of descent with modification. Naef went on to compile a dictionary that would regulate the translation of the language of systematic morphology into the language of phylogenetics. The switch from idealistic morphology to phylogenetic morphology is paradigmatically exemplified in the two editions (1859, 1870) of Carl Gegenbaur's Grundzüge der vergleichenden Anatomie. This paper traces the development of phylogenetic systematics from Gegenbaur through the work of Adolf Naef to Walter Zimmermann and Willi Hennig. Hennig added to Naef's systematic morphology the dimension of time, which required an ontological replacement: Naef's natural system, a nested hierarchy of intensionally defined sets subject to the membership relation, was replaced by Hennig's phylogenetic system, an enkaptic hierarchy subject to the part-to-whole relation.  相似文献   

10.
Martin GM 《FASEB journal》2011,25(11):3756-3762
In this contribution to the series of reflective essays celebrating the 25th anniversary of The FASEB Journal, our task is to assess the growth of research on the biology of aging during this period and to suggest where we might be heading during the next 25 yr. A review of the literature suggests a healthy acceleration of progress during the past decade, perhaps largely due to progress on the genetics of longevity of model organisms. Progress on the genetics of health span in these model organisms has lagged, however. Research on the genetic basis of the remarkable interspecific variations in life span has only recently begun to be seriously addressed. The spectacular advances in genomics should greatly accelerate progress. Research on environmental effects on life span and health span needs to be accelerated. Stochastic variations in gene expression in aging have only recently been addressed. These can lead to random departures from homeostasis during aging.-Martin, G. M. The biology of aging: 1985-2010 and beyond.  相似文献   

11.
Despite the advances of modern medicine, the threat of chronic illness, disfigurement, or death that can result from parasitic infection still affects the majority of the world population, retarding economic development. For most parasitic diseases, current therapeutics often leave much to be desired in terms of administration regime, toxicity, or effectiveness and potential vaccines are a long way from market. Our best prospects for identifying new targets for drug, vaccine, and diagnostics development and for dissecting the biological basis of drug resistance, antigenic diversity, infectivity and pathology lie in parasite genome analysis, and international mapping and gene discovery initiatives are under way for a variety of protozoan and helminth parasites. These are far from ideal experimental organisms, and the influence of biological and genomic characteristics on experimental approaches is discussed, progress is reviewed and future prospects are examined.  相似文献   

12.
13.
The genome of tomato (Solanum lycopersicum) is being sequenced by an international consortium of 10 countries (Korea, China, the United Kingdom, India, The Netherlands, France, Japan, Spain, Italy and the United States) as part of a larger initiative called the ‘International Solanaceae Genome Project (SOL): Systems Approach to Diversity and Adaptation’. The goal of this grassroots initiative, launched in November 2003, is to establish a network of information, resources and scientists to ultimately tackle two of the most significant questions in plant biology and agriculture: (1) How can a common set of genes/proteins give rise to a wide range of morphologically and ecologically distinct organisms that occupy our planet? (2) How can a deeper understanding of the genetic basis of plant diversity be harnessed to better meet the needs of society in an environmentally friendly and sustainable manner? The Solanaceae and closely related species such as coffee, which are included in the scope of the SOL project, are ideally suited to address both of these questions. The first step of the SOL project is to use an ordered BAC approach to generate a high quality sequence for the euchromatic portions of the tomato as a reference for the Solanaceae. Due to the high level of macro and micro-synteny in the Solanaceae the BAC-by-BAC tomato sequence will form the framework for shotgun sequencing of other species. The starting point for sequencing the genome is BACs anchored to the genetic map by overgo hybridization and AFLP technology. The overgos are derived from approximately 1500 markers from the tomato high density F2-2000 genetic map (http://sgn.cornell.edu/). These seed BACs will be used as anchors from which to radiate the tiling path using BAC end sequence data. Annotation will be performed according to SOL project guidelines. All the information generated under the SOL umbrella will be made available in a comprehensive website. The information will be interlinked with the ultimate goal that the comparative biology of the Solanaceae—and beyond—achieves a context that will facilitate a systems biology approach.  相似文献   

14.
15.
IQGAP scaffold proteins are evolutionarily conserved in eukaryotes and facilitate the formation of complexes that regulate cytoskeletal dynamics, intracellular signaling, and intercellular interactions. Fungal and mammalian IQGAPs are implicated in cytokinesis. IQGAP1, IQGAP2, and IQGAP3 have diverse roles in vertebrate physiology, operating in the kidney, nervous system, cardio-vascular system, pancreas, and lung. The functions of IQGAPs can be corrupted during oncogenesis and are usurped by microbial pathogens. Therefore, IQGAPs represent intriguing candidates for novel therapeutic agents. While modulation of the cytoskeletal architecture was initially thought to be the primary function of IQGAPs, it is now clear that they have roles beyond the cytoskeleton. This review describes contributions of IQGAPs to physiology at the organism level.  相似文献   

16.
Comparative biology: beyond sequence analysis   总被引:2,自引:0,他引:2  
Comparative analysis is a fundamental tool in biology. Conservation among species greatly assists the detection and characterization of functional elements, whereas inter-species differences are probably the best indicators of biological adaptation. Traditionally, comparative approaches were applied to the analysis of genomic sequences. With the growing availability of functional genomic data, comparative paradigms are now being extended also to the study of other functional attributes, most notably the gene expression. Here we review recent works applying comparative analysis to large-scale gene expression datasets and discuss the central principles and challenges of such approaches.  相似文献   

17.
A novel, cell-surface protein essential for Ca(2+) release-activated Ca(2+) (CRAC) channel function has been identified through independent genome-wide screens. This huge advance will enable molecular dissection of the CRAC channel complex, moving the field beyond Icrac signature to structure.  相似文献   

18.
19.
Root competition: beyond resource depletion   总被引:19,自引:3,他引:16  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号