首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dorsal–ventral patterning of the vertebrate retina is essential for accurate topographic mapping of retinal ganglion cell (RGC) axons to visual processing centers. Bone morphogenetic protein (Bmp) growth factors regulate dorsal retinal identity in vertebrate models, but the developmental timing of this signaling and the relative roles of individual Bmps remain unclear. In this study, we investigate the functions of two zebrafish Bmps, Gdf6a and Bmp4, during initiation of dorsal retinal identity, and subsequently during lens differentiation. Knockdown of zebrafish Gdf6a blocks initiation of retinal Smad phosphorylation and dorsal marker expression, while knockdown of Bmp4 produces no discernable retinal phenotype. These data, combined with analyses of embryos ectopically expressing Bmps, demonstrate that Gdf6a is necessary and sufficient for initiation of dorsal retinal identity. We note a profound expansion of ventral retinal identity in gdf6a morphants, demonstrating that dorsal BMP signaling antagonizes ventral marker expression. Finally, we demonstrate a role for Gdf6a in non-neural ocular tissues. Knockdown of Gdf6a leads to defects in lens-specific gene expression, and when combined with Bmp signaling inhibitors, disrupts lens fiber cell differentiation. Taken together, these data indicate that Gdf6a initiates dorsal retinal patterning independent of Bmp4, and regulates lens differentiation.  相似文献   

2.
Fgf signaling plays crucial roles in morphogenesis. Fgf19 is required for zebrafish forebrain development. Here, we examined the roles of Fgf19 in the formation of the lens and retina in zebrafish. Knockdown of Fgf19 caused a size reduction of the lens and the retina, failure of closure of the choroids fissure, and a progressive expansion of the retinal tissue to the midline of the forebrain. Fgf19 expressed in the nasal retina and lens was involved in cell survival but not cell proliferation during embryonic lens and retina development. Fgf19 was essential for the differentiation of lens fiber cells in the lens but not for the neuronal differentiation and lamination in the retina. Loss of nasal fate in the retina caused by the knockdown of Fgf19, expansion of nasal fate in the retina caused by the overexpression of Fgf19 and eye transplantation indicated that Fgf19 in the retina was crucial for the nasal-temporal patterning of the retina that is critical for the guidance of retinal ganglion cell axons. Knockdown of Fgf19 also caused incorrect axon pathfinding. The present findings indicate that Fgf19 positively regulates the patterning and growth of the retina, and the differentiation and growth of the lens in zebrafish.  相似文献   

3.
4.
5.
6.
7.
8.
Vertebrate ocular morphogenesis requires proper dorso‐ventral polarity within the optic vesicle, and loss of dorso‐ventral polarity results in failure of optic cup formation and domain specification, as shown by a reverse transplantation of the optic vesicle. We have shown previously that the ocular development depends not only on the signal within the antero‐ventral optic vesicle but also on the extraocular signals. In the present study, using embryonic transplantation of a discrete portion of the embryonic chick brain, we demonstrate formation of a second eye from the antero‐ventral hemicephalon when it was transplanted in the antero‐dorsal hemicephalon of the host embryo. The transplant consists of an antero‐ventral quadrant of the optic vesicle and the surrounding part of the anterior cephalon. The original dorso‐ventral polarity of the transplant was once cancelled and re‐established in accordance with that of the host embryo. Neither dorsal nor ventral cephalic halves in isolation did not develop into entire eye structures under the culture condition; the dorsal halves developed merely into the retinal pigmented epithelium and the ventral halves into the neural retina alone. The present study clearly suggests that extraocular dorsal and ventral signals counterbalance each other to specify the polarity of the optic vesicle.  相似文献   

9.
10.
The Crim1 gene encodes a transmembrane protein containing six cysteine-rich repeats similar to those found in the BMP antagonist, chordin (chd). To investigate its physiological role, zebrafish crim1 was cloned and shown to be both maternally and zygotically expressed during zebrafish development in sites including the vasculature, intermediate cell mass, notochord, and otic vesicle. Bent or hooked tails with U-shaped somites were observed in 85% of morphants from 12 hpf. This was accompanied by a loss of muscle pioneer cells. While morpholino knockdown of crim1 showed some evidence of ventralisation, including expansion of the intermediate cell mass (ICM), reduction in head size bent tails and disruption to the somites and notochord, this did not mimic the classically ventralised phenotype, as assessed by the pattern of expression of the dorsal markers chordin, otx2 and the ventral markers eve1, pax2.1, tal1 and gata1 between 75% epiboly and six-somites. From 24 hpf, morphants displayed an expansion of the ventral mesoderm-derived ICM, as evidenced by expansion of tal1, lmo2 and crim1 itself. Analysis of the crim1 morphant phenotype in Tg(fli:EGFP) fish showed a clear reduction in the endothelial cells forming the intersegmental vessels and a loss of the dorsal longitudinal anastomotic vessel (DLAV). Hence, the primary role of zebrafish crim1 is likely to be the regulation of somitic and vascular development.  相似文献   

11.
Dorsal and ventral specification in the early optic vesicle appears to play a crucial role in the proper development of the eye. In the present study, we performed embryonic transplantation and organ culturing of the chick optic vesicle in order to investigate how the dorsal-ventral (D-V) polarity is established in the optic vesicle and what role this polarity plays in proper eye development. The left optic vesicle was cut and transplanted inversely in the right eye cavity of host chick embryos. This method ensured that the D-V polarity was reversed while the anteroposterior axis remained normal. The results showed that the location of the choroid fissure was altered from the normal (ventral) to ectopic positions as the embryonic stage of transplantation progressed from 6 to 18 somites. At the same time, the shape of the optic vesicle and the expression patterns of Pax2 and Tbx5, marker genes for ventral and dorsal regions of the optic vesicle, respectively, changed concomitantly in a similar way. The crucial period was between the 8- and 14-somite stages, and during this period the polarity seemed to be gradually determined. In ovo explant culturing of the optic vesicle showed that the D-V polarity and choroid fissure formation were already specified by the 10-somite stage. These results indicate that the D-V polarity of the optic vesicle is established gradually between 8- and 14-somite stages under the influence of signals derived from the midline portion of the forebrain. The presumptive signal(s) appeared to be transmitted from proximal to distal regions within the optic vesicle. A severe anomaly was observed in the development of optic vesicles reversely transplanted around the 10-somite stage: the optic cup formation was disturbed and subsequently the neural retina and pigment epithelium did not develop normally. We concluded that establishment of the D-V polarity in the optic vesicle plays an essential role in the patterning and differentiation of the neural retina and pigment epithelium.  相似文献   

12.
Despite the known importance of long-chained polyunsaturated fatty acids (LC-PUFA) during development, very little is known about their utilization and biosynthesis during embryogenesis. Combining the advantages of the existence of a complete range of enzymes required for LC-PUFA biosynthesis and the well established developmental biology tools in zebrafish, we examined the expression patterns of three LC-PUFA biosynthesis genes, Elovl2-like elongase (elovl2), Elovl5-like elongase (elovl5) and fatty acyl desaturase (fad) in different zebrafish developmental stages. The presence of all three genes in the brain as early as 24 hours post fertilization (hpf) implies LC-PUFA synthesis activity in the embryonic brain. This expression eventually subsides from 72 hpf onwards, coinciding with the initiation of elovl2 and fad expression in the liver and intestine, 2 organs known to be involved in adult fish LC-PUFA biosynthesis. Collectively, these patterns strongly suggest the necessity for localized production of LC-PUFA in the brain during in early stage embryos prior to the maturation of the liver and intestine. Interestingly, we also showed a specific expression of elovl5 in the proximal convoluted tubule (PCT) of the zebrafish pronephros, suggesting a possible new role for LC-PUFA in kidney development and function.  相似文献   

13.
Pax2 is essential for the development of the urogenital system, neural tube, otic vesicle, optic cup and optic tract [Dressler, G.R., Deutsch, U., et al., 1990. PAX2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109 (4), 787-795; Nornes, H.O., Dressler, G.R., et al., 1990. Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development 109 (4), 797-809; Eccles, M.R., Wallis, L.J., et al., 1992. Expression of the PAX2 gene in human fetal kidney and Wilms’ tumor. Cell Growth Differ 3 (5), 279-289]. Within the visual system, a loss-of-function leads to lack of choroid fissure closure (known as a coloboma), a loss of optic nerve astrocytes, and anomalous axonal pathfinding at the optic chiasm [Favor, J., Sandulache, R., et al., 1996. The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc. Natl. Acad. Sci. U. S. A. 93 (24), 13870-13875; Torres, M., Gomez-Pardo, E., et al., 1996. Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122 (11), 3381-3391]. This study is directed at determining the effects of ectopic Pax2 expression in the chick ventral optic cup past the normal developmental period when Pax2 is found. In ovo electroporation of Pax2 into the chick ventral optic cup results in the formation of colobomas, a condition typically associated with a loss of Pax2 expression. While the overexpression of Pax2 appears to phenocopy a loss of Pax2, the mechanism of the failure of choroid fissure closure is associated with a cell fate switch from ventral retina and retinal pigmented epithelium (RPE) to an astrocyte fate. Further, ectopic expression of Pax2 in RPE appears to have non-cell autonomous effects on adjacent RPE, creating an ectopic neural retina in place of the RPE.  相似文献   

14.
During normal forebrain development in vertebrates, rostral neural tissue must be protected from Wnt signals via the actions of locally expressed Wnt antagonistic factors. In zebrafish zygotic oep (Zoep) mutants, forebrain structure is severely disrupted with reduced expression of the Wnt antagonists secreted frizzled related protein1 and dickkopf1. To analyze the temporal effects of Wnt antagonism on forebrain development, we generated transgenic zebrafish that overexpressed the dominant negative form of frizzled8a (DNfz8a) in wild-type and Zoep mutants under the control of a heat-inducible promoter. This model allowed for assessment of the dynamics of Wnt antagonistic signaling during forebrain development. Our results demonstrated that overexpression of DNfz8a in Zoep embryos between 7 and 16 hpf increased putative forebrain region demarcated by anf and distal-less2 expressions. These results suggest that normal forebrain development requires continual Wnt antagonism from the early gastrula to the mid-somitogenesis stage.  相似文献   

15.
16.
Timing of cell fate commitment determines distinct retinal cell types, which is believed to be controlled by a tightly coordinated regulatory program of proliferation, cell cycle exit and differentiation. Although homeobox protein Msx2 could induce apoptosis of optic vesicle, it is unclear whether Msx2 regulates differentiation and cell fate commitment of retinal progenitor cells (RPCs) to retinal ganglion cells (RGCs). In this study, we show that overexpression of Msx2 transiently suppressed the expression of Cyclin D1 and blocked cell proliferation. Meanwhile, overexpression of Msx2 delayed the expression of RGC-specific differentiation markers (Math5 and Brn3b), which showed that Msx2 could affect the timing of RGCs fate commitment and differentiation by delaying the timing of cell cycle exit of retinal progenitors. These results indicate Msx2 possesses dual regulatory functions in controlling cell cycle progression of retinal RPCs and timing of RGCs differentiation.  相似文献   

17.
18.
Despite the importance of the retinal pigment epithelium (RPE) for vision, the molecular processes involved in its specification are poorly understood. We identified two new mutant alleles for the zebrafish gene chokh (chk), which display a reduction or absence of the RPE. Unexpectedly, the neural retina (NR) in chk is specified and laminated, indicating that the regulatory network leading to NR development is largely independent of the RPE. Genetic mapping and molecular characterization revealed that chk encodes Rx3. Expression analyses show that otx2 and mitfb are not expressed in the prospective RPE of chk, indicating that the retinal homeobox gene rx3 acts upstream of the molecular network controlling RPE specification. Cellular transplantations demonstrate that rx3 function is autonomously required to specify the prospective RPE. Though rx2 is also absent in chk, neither rx2 nor rx1 is required for RPE development. Thus, our data provide the first indication that, in addition to controlling optic lobe evagination and proliferation, chk/rx3 also determines cellular fate.  相似文献   

19.
Dorsal-ventral (DV) specification in the early optic vesicle plays a crucial role in the proper development of the eye. To address the questions of how DV specification is determined and how it affects fate determination of the optic vesicle, isolated optic vesicles were cultured either in vitro or in ovo. The dorsal and ventral halves of the optic vesicle were fated to develop into retinal pigment epithelium (RPE) and neural retina, respectively, when they were separated from each other and cultured. In optic vesicles treated with collagenase to remove the surrounding tissues, the neuroepithelium gave rise to cRax expression but not Mitf, suggesting that surrounding tissues are necessary for RPE specification. This was also confirmed in in ovo explant cultures. Combination cultures of collagenase-treated optic vesicles with either the dorsal or ventral part of the head indicated that head-derived factors have an important role in the fate determination of the optic vesicle: in the optic vesicles co-cultured with the dorsal part of the head Mitf expression was induced in the neuroepithelium, while the ventral head portion did not have this effect. The dorsal head also suppressed Pax2 expression in the optic vesicle. These observations indicate that factors from the dorsal head portion have important roles in the establishment of DV polarity within the optic vesicle, which in turn induces the patterning and differentiation of the neural retina and pigment epithelium.  相似文献   

20.
Dorsal and ventral specification in the early optic vesicle plays a crucial role in vertebrate ocular morphogenesis, and proper dorsal‐ventral polarity in the optic vesicle ensures that distinct structures develop in separate domains within the eye primordium. The polarity is determined progressively during development by coordinated regulation of extraocular dorsal and ventral factors. In the present study, we cultured discrete portions of embryonic chick brains by preparing anterior cephalon, anterior dorsal cephalon and anterior ventral cephalon, and clearly demonstrate that bone morphogenetic protein 4 (BMP4) and Sonic hedgehog (Shh) constitute a dorsal‐ventral signaling system together with fibroblast growth factor 8 (FGF8). BMP4 and Shh upregulate Tbx5 and Pax2, as reported previously, and at the same time Shh downregulates Tbx5, while BMP4 affects Pax2 expression to downregulate similarly. Shh induces Fgf8 expression in the ventral optic vesicle. This, in turn, determines the distinct boundary of the retinal pigmented epithelium and the neural retina by suppressing Mitf expression. The lens develops only when signals from both the dorsal and ventral regions come across together. Inverted deposition of Shh and BMP4 signals in organ‐cultured optic vesicle completely re‐organized ocular structures to be inverted. Based on these observations we propose a novel model in which the two signals govern the whole of ocular development when they encounter each other in the ocular morphogenic domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号