首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In tundra, at a low temperature, there exists a slowly developing methanotrophic community. Methane-oxidizing bacteria are associated with plants growing at high humidity, such as sedge and sphagnum; no methanotrophs were found in polytrichous and aulacomnious mosses and lichens, typical of more arid areas. The methanotrophic bacterial community inhabits definite soil horizons, from moss dust to peat formed from it. The potential ability of the methanotrophic community to oxidize methane at 5°C enhances with the depth of the soil profile in spite of the decreasing soil temperature. The methanotrophic community was found to gradually adapt to various temperatures due to the presence of different methane-oxidizing bacteria in its composition. Depending on the temperature and pH, different methanotrophs occupy different econiches. Within a temperature range from 5 to 15°C, three morphologically distinct groups of methanotrophs could be distinguished. At pH 5–7 and 5–15°C, forms morphologically similar to Methylobacter psychrophilus predominated, whereas at the acidic pH 4–6 and 10–15°C, bipolar cells typical of Methylocella palustris were mostly found. The third group of methanotrophic bacteria growing at pH 5–7 and 5–10°C was represented by a novel methanotroph whose large coccoid cells had a thick mucous capsule.  相似文献   

2.
Temperature change affects methane consumption in soil. However, there is no information on possible temperature control of methanotrophic bacterial populations. Therefore, we studied CH(4) consumption and populations of methanotrophs in an upland forest soil and a rice field soil incubated at different temperatures between 5 and 45 degrees C for up to 40 days. Potential methane consumption was measured at 4% CH(4). The temporal progress of CH(4) consumption indicated growth of methanotrophs. Both soils showed maximum CH(4) consumption at 25-35 degrees C, but no activity at >40 degrees C. In forest soil CH(4) was also consumed at 5 degrees C, but in rice soil only at 15 degrees C. Methanotroph populations were assessed by terminal restriction fragment length polymorphism (T-RFLP) targeting particulate methane monooxygenase (pmoA) genes. Eight T-RFs with relative abundance >1% were retrieved from both forest and rice soil. The individual T-RFs were tentatively assigned to different methanotrophic populations (e.g. Methylococcus/Methylocaldum, Methylomicrobium, Methylobacter, Methylocystis/Methylosinus) according to published sequence data. Two T-RFs were assigned to ammonium monooxygenase (amoA) gene sequences. Statistical tests showed that temperature affected the relative abundance of most T-RFs. Furthermore, the relative abundance of individual T-RFs differed between the two soils, and also exhibited different temperature dependence. We conclude that temperature can be an important factor regulating the community composition of methanotrophs in soil.  相似文献   

3.
The aim of this study was to quantitatively analyse methanotrophs in two laboratory landfill biofilters at different biofilter depths and at temperatures which mimicked the boreal climatic conditions. Both biofilters were dominated by type I methanotrophs. The biofilter depth profiles showed that type I methanotrophs occurred in the upper layer, where relatively high O(2) and low CH(4) concentrations were present, whereas type II methanotrophs were mostly distributed in the zone with high CH(4) and low O(2) concentrations. The number of type I methanotrophic cells declined when the temperature was raised from 15 degrees C to 23 degrees C, but increased when lowered to 5 degrees C. A slight decrease in type II methanotrophs was also observed when the temperature was raised from 15 degrees C to 23 degrees C, whereas cell numbers remained constant when lowered to 5 degrees C. The results indicated that low temperature conditions favored both type I and type II methanotrophs in the biofilters.  相似文献   

4.
Methanotrophic bacteria play a crucial role in regulating the emission of CH4 from rice fields into the atmosphere. We investigated the CH4 oxidation activity together with the diversity of methanotrophic bacteria in ten rice field soils from different geographic locations. Upon incubation of aerated soil slurries under 7% CH4, rates of CH4 oxidation increased after a lag phase of 1-4 days and reached values of 3-10 micromol d(-1) g-dw(-1) soil. The methanotrophic community was assayed by retrieval of the pmoA gene which encodes the a subunit of the particulate methane monooxygenase. After extraction of DNA from actively CH4-oxidizing soil samples and PCR-amplification of the pmoA, the community was analyzed by Denaturant Gradient Gel Electrophoresis (DGGE) and Terminal Restriction Fragment Length Polymorphism (T-RFLP). DGGE bands were excised, the pmoA re-amplified, sequenced and the encoded amino acid sequence comparatively analyzed by phylogenetic treeing. The analyses allowed the detection of pmoA sequences related to the following methanotrophic genera: the type-I methanotrophs Methylobacter, Methylomicrobium, Methylococcus and Methylocaldum, and the type-II methanotrophs Methylocystis and Methylosinus. T-RFLP analysis detected a similar diversity, but type-II pmoA more frequently than DGGE. All soils but one contained type-II in addition to type-I methanotrophs. Type-I Methylomonas was not detected at all. Different combinations of methanotrophic genera were detected in the different soils. However, there was no obvious geographic pattern of the distribution of methanotrophs.  相似文献   

5.
Dedysh SN 《Mikrobiologiia》2002,71(6):741-754
Acid sphagnum bogs cover a considerable part of the territory of Russia and are an important natural source of biogenic methane, which is formed in their anaerobic layers. A considerable portion of this methane is consumed in the aerobic part of the bog profile by acidophilic methanotrophic bacteria, which comprise the methane filter of sphagnum bogs and decrease CH4 emission to the atmosphere. For a long time, these bacteria escaped isolation, which became possible only after the elucidation of the optimal conditions of their functioning in situ: pH 4.5 to 5.5; temperature, from 15 to 20 degrees C; and low salt concentration in the solution. Reproduction of these conditions and rejection of earlier used media with a high content of biogenic elements allowed methanotrophic bacteria of two new genera and species--Methylocella palustris and Methylocapsa acidophila--to be isolated from the peat of sphagnum bogs of the northern part of European Russia and West Siberia. These bacteria are well adapted to the conditions in cold, acid, oligotrophic sphagnum bogs. They grow in a pH range of 4.2-7.5 with an optimum at 5.0-5.5, prefer moderate temperatures (15-25 degrees C) and media with a low content of mineral salts (200-500 mg/l), and are capable of active nitrogen fixation. Design of fluorescently labeled 16S rRNA-targeted oligonucleotide probes for the detection of Methylocella palustris and Methylocapsa acidophila and their application to the analysis of sphagnum peat samples showed that these bacteria represent dominant populations of methanotrophs with a density of 10(5)-10(6) cells/g peat. In addition to Methylocella and Methylocapsa populations, one more abundant population of methanotrophs was revealed (10(6) cells/g peat), which were phylogenetically close to the genus Methylocystis.  相似文献   

6.
Methane emission from the following types of tundra soils was studied: coarse humic gleyey loamy cryo soil, peaty gley soil, and peaty gleyey midloamy cryo soil of the arctic tundra. All the soils studied were found to be potential sources of atmospheric methane. The highest values of methane emission were recorded in August at a soil temperature of 8-10 degrees C. Flooded parcels were the sources of atmospheric methane throughout the observation period. The rates of methane production and oxidation in tundra soils of various types at 5 and 15 degrees C were studied by the radioisotope method. Methane oxidation was found to occur in bog water, in the green part of peat moss, and in all the soil horizons studied. Methane formation was recorded in the horizons of peat, in clay with plant roots, and in peaty moss dust of the bogey parcels. At both temperatures, the methane oxidation rate exceeded the rate of methane formation in all the horizons of the mossy-lichen tundra and of the bumpy sinkhole complex. Methanogenesis prevailed only in a sedge-peat moss bog at 15 degrees C. Enrichment bacterial cultures oxidizing methane at 5 and 15 degrees C were obtained. Different types of methanotrophic bacteria were shown to be responsible for methane oxidation under these conditions. A representative of type I methylotrophs oxidized methane at 5 degrees C, and Methylocella tundrae, a psychroactive representative of an acidophilic methanotrophic genus Methylocella, at 15 degrees C.  相似文献   

7.
The optimal growth of mesophilic methanotrophic bacteria (collection strains of the genera Methylocystis, Methylomonas, Methylosinus, and Methylobacter) occurred within temperature ranges of 31-34 degrees C and 23-25 degrees C. None of the strains studied were able to grow at 1.5 or 4 degrees C. Representatives of six methanotrophic species (strains Mcs. echinoides 2, Mm. methanica 12, Mb. bovis 89, Mcs. pyriformis 14, Mb. chroococcum 90, and Mb. vinelandii 87) could grow at 10 degrees C (with a low specific growth rate). The results obtained suggest that some mesophilic methane-oxidizing bacteria display psychrotolerant (psychrotrophic) but not psychrophilic properties. In general, the Rosso model, which describes bacterial growth rate as a function of temperature, fits well the experimental data, although, for most methanotrophs, with symmetrical approximations for optimal temperature.  相似文献   

8.
9.
We investigated the effect of afforestation and reforestation of pastures on methane oxidation and the methanotrophic communities in soils from three different New Zealand sites. Methane oxidation was measured in soils from two pine (Pinus radiata) forests and one shrubland (mainly Kunzea ericoides var. ericoides) and three adjacent permanent pastures. The methane oxidation rate was consistently higher in the pine forest or shrubland soils than in the adjacent pasture soils. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of these soils revealed that different methanotrophic communities were active in soils under the different vegetations. The C18 PLFAs (signature of type II methanotrophs) predominated under pine and shrublands, and C16 PLFAs (type I methanotrophs) predominated under pastures. Analysis of the methanotrophs by molecular methods revealed further differences in methanotrophic community structure under the different vegetation types. Cloning and sequencing and terminal-restriction fragment length polymorphism analysis of the particulate methane oxygenase gene (pmoA) from different samples confirmed the PLFA-SIP results that methanotrophic bacteria related to type II methanotrophs were dominant in pine forest and shrubland, and type I methanotrophs (related to Methylococcus capsulatus) were dominant in all pasture soils. We report that afforestation and reforestation of pastures caused changes in methane oxidation by altering the community structure of methanotrophic bacteria in these soils.  相似文献   

10.
The activity and distribution of methanotrophs in soil depend on the availability of CH4 and O2. Therefore, we investigated the activity and structure of the methanotrophic community in rice field soil under four factorial combinations of high and low CH4 and O2 concentrations. The methanotrophic population structure was resolved by denaturant gradient gel electrophoresis (DGGE) with different PCR primer sets targeting the 16S rRNA gene, and two functional genes coding for key enzymes in methanotrophs, i.e. the particulate methane monooxygenase (pmoA) and the methanol dehydrogenase (mxaF). Changes in the biomass of type I and II methanotrophic bacteria in the rice soil were determined by analysis of phospholipid-ester-linked fatty acid (PLFA) biomarkers. The relative contribution of type I and II methanotrophs to the measured methane oxidation activity was determined by labelling of soil samples with 14CH4 followed by analysis of [14C]-PLFAs. CH4 oxidation was repressed by high O2 (20.5%), and enhanced by low O2 (1%). Depending on the CH4 and O2 mixing ratios, different methanotrophic communities developed with a higher diversity at low than at high CH4 concentration as revealed by PCR-DGGE. However, a prevalence of type I or II populations was not detected. The [14C]-PLFA fingerprints, on the other hand, revealed that CH4 oxidation activity was dominated by type I methanotrophs in incubations with low CH4 mixing ratios (1000 p.p.m.v.) and during initiation of CH4 consumption regardless of O2 or CH4 mixing ratio. At high methane mixing ratios (10 000 p.p.m.v.), type I and II methanotrophs contributed equally to the measured CH4 metabolism. Collectively, type I methanotrophs responded fast and with pronounced shifts in population structure and dominated the activity under all four gas mixtures. Type II methanotrophs, on the other hand, although apparently more abundant, always present and showing a largely stable population structure, became active later and contributed to CH4 oxidation activity mainly under high CH4 mixing ratios.  相似文献   

11.
Aerobic methanotrophic bacteria (methanotrophs) use methane as a source of carbon and energy, thereby mitigating net methane emissions from natural sources. Methanotrophs represent a widespread and phylogenetically complex guild, yet the biogeography of this functional group and the factors that explain the taxonomic structure of the methanotrophic assemblage are still poorly understood. Here, we used high‐throughput sequencing of the 16S rRNA gene of the bacterial community to study the methanotrophic community composition and the environmental factors that influence their distribution and relative abundance in a wide range of freshwater habitats, including lakes, streams and rivers across the boreal landscape. Within one region, soil and soil water samples were additionally taken from the surrounding watersheds in order to cover the full terrestrial–aquatic continuum. The composition of methanotrophic communities across the boreal landscape showed only a modest degree of regional differentiation but a strong structuring along the hydrologic continuum from soil to lake communities, regardless of regions. This pattern along the hydrologic continuum was mostly explained by a clear niche differentiation between type I and type II methanotrophs along environmental gradients in pH, and methane concentrations. Our results suggest very different roles of type I and type II methanotrophs within inland waters, the latter likely having a terrestrial source and reflecting passive transport and dilution along the aquatic networks, but this is an unresolved issue that requires further investigation.  相似文献   

12.
A robust, naturally evolving methanotrophic community in landfill cover soil (LFCS) can be the simplest way to mitigate landfill methane emission. In this study, bacterial community composition in LFCS and methane oxidation potential of enriched methanotrophic consortium, in comparison to that of axenic Methylosinus sporium, was investigated. Growth and methane oxidation of the consortium was studied in liquid phase batch experiments under varying temperature (20–40°C), pH (5–10), headspace CO2, and in presence of porous adsorbent (1.3 cm3 sponge cubes). The 16S rRNA gene analysis revealed presence of both type-I and type-II methanotrophs along with few obligate methylotroph in LFCS. Though the optimal growth condition of the consortium was at 30°C and pH 7, it was more resilient in comparison to M. sporium. With increasing availability of porous adsorbent, methane consumption by the consortium was significantly improved (p < 0.001) reaching a maximum specific methane oxidation rate of 11.4 μmol mg?1 biomass h?1. Thus, inducing naturally thriving methanotrophs in LFCS is a better alternative to axenic methanotrophic culture in methane emission management.  相似文献   

13.
Methane oxidation in soils is mostly accomplished by methanotrophic bacteria. Little is known about the abundance of methanotrophs in soils, since quantification by cultivation and microscopic techniques is cumbersome. Comparison of 16S ribosomal DNA and pmoA (alpha subunit of the particulate methane monooxygenase) phylogenetic trees showed good correlation and revealed five distinct groups of methanotrophs within the alpha and gamma subclasses of Proteobacteria: the Methylococcus group, the Methylobacter/Methylosarcina group, the Methylosinus group, the Methylocapsa group, and the forest clones group (a cluster of pmoA sequences retrieved from forest soils). We developed quantitative real-time PCR assays with SybrGreen for each of these five groups and for all methanotrophic bacteria by targeting the pmoA gene. Detection limits were between 10(1) and 10(2) target molecules per reaction for all assays. Real-time PCR analysis of soil samples spiked with cells of Methylococcus capsulatus, Methylomicrobium album, and Methylosinus trichosporium recovered almost all the added bacteria. Only the Methylosinus-specific assay recovered only 20% of added cells, possibly due to a lower lysis efficiency of type II methanotrophs. Analysis of the methanotrophic community structure in a flooded rice field soil showed (5.0 +/- 1.4) x 10(6) pmoA molecules g(-1) for all methanotrophs. The Methylosinus group was predominant (2.7 x 10(6) +/- 1.1 x 10(6) target molecules g(-1)). In addition, bacteria of the Methylobacter/Methylosarcina group were abundant (2.0 x 10(6) +/- 0.9 x 10(6) target molecules g of soil(-1)). On the other hand, pmoA affiliated with the forest clones and the Methylocapsa group was below the detection limit of 1.9 x 10(4) target molecules g of soil(-1). Our results showed that pmoA-targeted real-time PCR allowed fast and sensitive quantification of the five major groups of methanotrophs in soil. This approach will thus be useful for quantitative analysis of the community structure of methanotrophs in nature.  相似文献   

14.
稻田内源甲烷的氧化是稻田甲烷减排的重要途径。而甲烷氧化菌是土壤中甲烷氧化的主要施动者,在长期不同施肥条件下,土壤微生物群落的演变是否影响到土壤甲烷氧化菌群落结构及其活性,进而影响到田土壤CH4向大气的实际排放强度还不清楚。为此,选择太湖地区一个长期肥料试验的稻田土壤为研究对象,分析长期不同肥料施用对土壤甲烷氧化能力的影响及其与土壤中甲烷氧化菌群落结构变化的可能关系。结果表明,长期不同的施肥措施下稻田土壤对甲烷的氧化能力产生了明显差异,伴随着土壤中甲烷氧化菌(MOBI和MOBII)的基因群落多样性的显著变化。长期单一施用氮肥为主的化肥显著降低了土壤对甲烷的氧化能力,同时显著降低了稻田土壤甲烷氧化菌的多样性和丰富度;不同施肥下甲烷氧化菌多样性的变化与土壤的甲烷氧化能力的变化趋势相一致。因此,研究显示长期不同施肥处理下甲烷氧化菌群落结构的改变可能是引起水稻土甲烷氧化能力变化的一个主要因素,有机无机配合施用可以明显降低稻田土壤甲烷的大气释放潜能。但长期不同施肥处理下甲烷氧化菌活性的变化还有待于进一步研究。  相似文献   

15.
Soil drainage is one of the most promising approaches to mitigate methane (CH(4) ) emission from paddy fields. The microbial mechanism for the drainage effect on CH(4) emission, however, remains poorly understood. In the present study, we determined the effect of short (four drainages of 5-6 days each) and long drainage cycles (two drainages of 10-11 days each) on CH(4) emission and analyzed the response of the structure and abundance of methanogens and methanotrophs in a Chinese rice field soil at the DNA level. Rice biomass production was similar between drainage and the practice of continuous flooding. The rate of CH(4) emission, however, was reduced by 59% and 85% for the long and short drainage cycles, respectively. Quantitative (real-time) PCR analysis revealed that the total abundance of archaeal populations decreased by 40% after multiple drainages, indicating the inhibitory effects on methanogen growth. The structure of the methanogen community as determined by terminal restriction fragment length polymorphism analysis, however, remained unaffected by drainages, although it varied among rhizosphere, bulk and surface soils. Quantitative PCR analysis of the methanotrophic functional pmoA genes revealed that the total abundance of methanotrophs in rhizosphere soil increased two to three times after soil drainages, indicating a stimulation of methanotroph growth. The CH(4) oxidation potential in the rhizosphere soil also increased significantly. Furthermore, drainages caused a shift of the methanotrophic community, with a significantly increase of type II methanotrophic bacteria in the rhizosphere and surface soil. Thus, both inhibition of methanogens and stimulation of methanotrophs were partly responsible for the reduction of CH(4) emissions. The methanotroph community, however, appeared to react more sensitively to soil drainage compared with the methanogen community.  相似文献   

16.
Currently, molecular biologic techniques achieve a great development in studies of soil samples. The objective of this research is to improve methods for microbial prospecting of oil and gas by applying culture-independent techniques to soil sampled from above a known oil and gas field. Firstly, the community structure of soil bacteria above the Ban 876 Gas and Oil Field was analyzed based on 16S rRNA gene clone libraries. The soil bacteria communities were consistently different along the depth; however, Chloroflexi and Gemmatimonadetes were predominant and methanotrophs were minor in both bacteria libraries (DGS1 and DGS2). Secondly, the numbers of methane-oxidizing bacteria, quantified using a culture-dependent procedure and culture-independent group-specific real-time PCR (RT-PCR), respectively, were inconsistent with a quantify variance of one or two orders of magnitude. Special emphasis was given to the counting advantages of RT-PCR based on the methanotrophic pmoA gene. Finally, the diversity and distribution of methanotrophic communities in the soil samples were analyzed by constructing clone libraries of functional gene. All 508-bp inserts in clones phylogenetically belonged to the methanotrophic pmoA gene with similarities from 83% to 100%. However, most of the similarities were below 96%. Five clone libraries of methanotrophs clearly showed that the anomalous methanotrophs (Methylosinus and Methylocystis) occupy the studied area.  相似文献   

17.
Methane (CH4) oxidation and the methanotrophic community structure of a pristine New Zealand beech forest were investigated using biochemical and molecular methods. Phospholipid-fatty acid-stable-isotope probing (PLFA-SIP) was used to identify the active population of methanotrophs in soil beneath the forest floor, while terminal-restriction fragment length polymorphism (T-RFLP) and cloning and sequencing of the pmoA gene were used to characterize the methanotrophic community. PLFA-SIP suggested that type II methanotrophs were the predominant active group. T-RFLP and cloning and sequencing of the pmoA genes revealed that the methanotrophic community was diverse, and a slightly higher number of type II methanotrophs were detected in the clone library. Most of the clones from type II methanotrophs were related to uncultured pmoA genes obtained directly from environmental samples, while clones from type I were distantly related to Methylococcus capsulatus. A combined data analysis suggested that the type II methanotrophs may be mainly responsible for atmospheric CH4 consumption. Further sequence analysis suggested that most of the methanotrophs detected shared their phylogeny with methanotrophs reported from soils in the Northern Hemisphere. However, some of the pmoA sequences obtained from this forest had comparatively low similarity (<97%) to known sequences available in public databases, suggesting that they may belong to novel groups of methanotrophic bacteria. Different methods of methanotrophic community analysis were also compared, and it is suggested that a combination of molecular methods with PLFA-SIP can address several shortcomings of stable isotope probing.  相似文献   

18.
Biofilters operated for the microbial oxidation of landfill methane at two sites in Northern Germany were analysed for the composition of their methanotrophic community by means of diagnostic microarray targeting the pmoA gene of methanotrophs. The gas emitted from site Francop (FR) contained the typical principal components (CH4, CO2, N2) only, while the gas at the second site Müggenburger Strasse (MU) was additionally charged with non-methane volatile organic compounds (NMVOCs). Methane oxidation activity measured at 22 degrees C varied between 7 and 103 microg CH4 (g dw)(-1) h(-1) at site FR and between 0.9 and 21 microg CH4 (g dw)(-1) h(-1) at site MU, depending on the depth considered. The calculated size of the active methanotrophic population varied between 3 x 10(9) and 5 x 10(11) cells (g dw)(-1) for biofilter FR and 4 x 10(8) to 1 x 10(10) cells (g dw)(-1) for biofilter MU. The methanotrophic community in both biofilters as well as the methanotrophs present in the landfill gas at site FR was strongly dominated by type II organisms, presumably as a result of high methane loads, low copper concentration and low nitrogen availability. Within each biofilter, community composition differed markedly with depth, reflecting either the different conditions of diffusive oxygen supply or the properties of the two layers of materials used in the filters or both. The two biofilter communities differed significantly. Type I methanotrophs were detected in biofilter FR but not in biofilter MU. The type II community in biofilter FR was dominated by Methylocystis species, whereas the biofilter at site MU hosted a high abundance of Methylosinus species while showing less overall methanotroph diversity. It is speculated that the differing composition of the type II population at site MU is driven by the presence of NMVOCs in the landfill gas fed to the biofilter, selecting for organisms capable of co-oxidative degradation of these compounds.  相似文献   

19.
Anoxic soils, such as flooded rice fields, are major sources of the greenhouse gas CH(4) while oxic upland soils are major sinks of atmospheric CH(4). Nevertheless, CH(4) is also consumed in rice fields where up to 90% of the produced CH(4) is oxidized in a narrow oxic zone around the rice roots and in the soil surface layer before it escapes into the atmosphere. After 1 day drainage of rice field soil, CH(4) oxidation was detected in the top 2-mm soil layers, but after 8 days drainage the zone of CH(4) oxidation extended to 8 mm depth. Simultaneously, the potential for CH(4) production decreased, but some production was still detectable after 8 days drainage throughout the soil profile. The vertical distribution of the methanotrophic community was also monitored after 1 and 8 days drainage using denaturing gradient gel electrophoresis after PCR amplification with primer sets targeting two regions on the 16S rRNA gene that are relatively specific for methylotrophic alpha- and gamma-Proteobacteria, and targeting two functional genes encoding subunits of key enzymes in all methanotrophs, i.e. the genes for the particulate methane monooxygenase (pmoA) and the methanol dehydrogenase (mxaF). Drainage stimulated the methanotrophic community. Eight days after drainage, new methanotrophic populations appeared and a distinct methanotrophic community developed. The population structure of type I and II methanotrophs was differently affected by drainage. Type II methanotrophs (alpha-Proteobacteria) were present throughout the soil core directly after drainage (1 day), and the community composition remained largely unchanged with depth. Only two new type II populations appeared after 8 days of drainage. Drainage had a more pronounced impact on the type I methanotrophic community (gamma-Proteobacteria). Type I populations were not or only weakly detected 1 day after drainage. However, after 8 days of drainage, a large diversity of type I methanotrophs were detected, altough they were not evenly distributed throughout the soil core but dominated at different depths. A distinct type I community structure had developed within each soil section between 0 and 20 mm soil depth, indicating the widening of suitable habitats for methanotrophs in the rice field soil within 1 week of drainage.  相似文献   

20.
Emissions of N2O from cover soils of both abandoned (> 30 years) and active landfills greatly exceed the maximum fluxes previously reported for tropical soils, suggesting high microbial activities for N2O production. Low soil matrix potentials (<-0.7 MPa) indicate that nitrification was the most likely mechanism of N2O formation during most of the time of sampling. Soil moisture had a strong influence on N2O emissions. The production of N2O was stimulated by as much as 20 times during laboratory incubations, when moisture was increased from -2.0 MPa to -0.6 MPa. Additional evidence from incubation experiments and delta13C analyses of fatty acids (18:1) diagnostic of methanotrophs suggests that N2O is formed in these soils by nitrification via methanotrophic bacteria. In a NH3(g)-amended landfill soil, the rate of N2O production was significantly increased when incubated with 100 ppmv methane compared with 1.8 ppmv (atmospheric) methane. Preincubation of a landfill soil with 1% CH4 for 2 weeks resulted in higher rates of N2O production when subsequently amended with NH3(g) relative to a control soil preincubated without CH4. At one location, at the soil depth (9-16 cm) of maximum methane consumption and N2O production, we observe elevated concentrations of organic carbon and nitrogen and distinct minima in delta15N (+1.0%) and delta13C (-33.8%) values for organic nitrogen and organic carbon respectively. A delta13C value of -39.3% was measured for 18:1 carbon fatty acids in this soil, diagnostic of type II methanotrophs. The low delta15N value for organic nitrogen is consistent with N2 fixation by type II methanotrophs. These observations all point to a methanotrophic origin for the organic matter at this depth. The results of this study corroborate previous reports of methanotrophic nitrification and N2O formation in aqueous and soil environments and suggest a predominance of type II rather than type I or type X methanotrophs in this landfill soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号