首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fat-1 transgenic mice endogenously convert n-6 to n-3 polyunsaturated fatty acids (PUFA). The aims of this study were to test whether a) fish oil feeding can attain similar brain n-3 PUFA levels as the fat-1 mouse, and b) fat-1 mouse brain docosahexaenoic acid (22:6n-3; DHA) levels can be potentiated by fish oil feeding. Fat-1 mice and their wildtype littermates consumed either a 10% safflower oil (SO) or a 2% fish oil and 8% safflower oil chow (FO). Brain total lipid and phospholipid fraction fatty acids were analyzed using GC-FID. Wildtype mice fed FO chow had similar brain levels of DHA as fat-1 mice fed SO chow. Fat-1 mice fed FO chow had similar brain n-3 PUFA levels as fat-1 mice fed SO chow. In conclusion, brain levels of DHA in the fat-1 mouse can be obtained by and were not further augmented with fish oil feeding.  相似文献   

2.
3.
In adult rats, 22:6(n - 3) dietary deficiency does not affect brain membranes, but has a significant effect on some other visceral organs. 60-day-old male rats fed a diet containing sufficient amounts of both linoleic and alpha-linolenic acid were divided into three groups. One group continued the same diet; the second was fed a diet containing 2% sunflower oil, the third was fed 10% sunflower oil (sunflower oil contains linoleic acid, but trace amount of alpha-linolenic acid). Animals were killed different times after receiving the new diets (1 to 31 weeks). For animals fed the diets containing only sunflower oil, deficiency in cervonic acid content (DHA, docosahexaenoic acid, 22:6(n - 3)) was not detected in whole brain, myelin or nerve endings within 31 weeks. In contrast, this acid progressively declined in liver, heart and testes up to 3 weeks and remained nearly stable thereafter. In parallel to the reduction of cervonic acid content, 22:5(n - 6) content increased in liver and heart, but not in testes. It also increased in brain, nerve endings and myelin from week 3, 6 and, 9 respectively. These results suggest that brain cervonic acid is highly preserved or is maintained at the expense of other organs.  相似文献   

4.
Phospholipase D (PLD) is emerging as a major player in many novel signaling pathways. Based on recent studies correlating membrane composition with enzyme function, we speculated that feeding of dietary lipids to the newborns has a major impact on brain PLD activity. To test this hypothesis, the rat dams were fed fat-free powder containing either safflower oil or fish oil, and a control powdered chow. The pups were weaned onto the diet and sacrificed at 30 days of age. PLD activity was measured by transphosphatidylation assays using rat brain membranes. This study shows that microsome GTPS-dependent PLD activity in rats fed safflower oil or fish oil was significantly reduced by 38% and 30% respectively compared to controls. Oleate-dependent PLD activity in the safflower oil group, however, was significantly increased by 38%. In contrast, synaptosome membrane (P2) GTPS-dependent PLD activity in rats consuming safflower oil was significantly increased by 29%, but there was no difference in oleate-dependent PLD activity. Likewise, no difference was observed in microsome oleate-dependent PLD and P2 GTPS-dependent PLD activity between the fish oil and the control groups. These results indicate that dietary lipid intake appears to modulate phospholipid metabolism and differential expression of PLD isozymes in the brain.  相似文献   

5.
This study aimed to investigate the effects and possible interactions of birth weight and n-3 polyunsaturated fatty acid (PUFA) supplementation of the maternal diet on the fatty acid status of different tissues of newborn piglets. These effects are of interest as both parameters have been associated with pre-weaning mortality. Sows were fed a palm oil diet or a diet containing 1% linseed, echium or fish oil from day 73 of gestation. As fish oil becomes a scarce resource, linseed and echium oil were supplemented as sustainable alternatives, adding precursor fatty acids for DHA to the diet. At birth, the lightest and heaviest male piglet per litter were killed and samples from liver, brain and muscle were taken for fatty acid analysis. Piglets that died pre-weaning had lower birth weights than piglets surviving lactation (1.27±0.04 v. 1.55±0.02 kg; P<0.001), but no effect of diet on mortality was found. Lower DHA concentrations were observed in the brain of the lighter piglets compared with their heavier littermates (9.46±0.05 v. 9.63±0.04 g DHA/100 g fatty acids; P=0.008), suggesting that the higher incidence of pre-weaning mortality in low birth weight piglets may be related to their lower brain DHA status. Adding n-3 PUFA to the sow diet could not significantly reduce this difference in DHA status, although numerically the difference in the brain DHA concentration between the piglet weight groups was smaller when fish oil was included in the sow diet. Independent of birth weight, echium or linseed oil in the sow diet increased the DHA concentration of the piglet tissues to the same extent, but the concentrations were not as high as when fish oil was fed.  相似文献   

6.
实验模拟自然氧化条件制备氧化鱼油, 替代普通鱼油加入饲料中, 研究其对黄颡鱼(Pelteobagrus fulvidraco)表皮黑色素、酪氨酸酶活力、血清与脑内分泌激素含量的影响。处理组分别为未替代组(C组)、50%氧化鱼油替代组(Y50组)和100%氧化鱼油替代组(Y100组), 结果表明: 随着氧化鱼油替代普通鱼油的比例提高, 黄颡鱼5级(黑色素占细胞面积80%以上)黑色素细胞比例上升; 酪氨酸酶活力上升, 但各组差异不显著(P>0.05); 皮质酮(CORT)在血清和脑组织中各组含量差异均不显著(P>0.05); 肾上腺皮质激素(ACTH)在脑组织中含量增加 (P<0.05), 而血清中Y50组含量高于C组及Y100组(P<0.05); 血清中促肾上腺皮质激素释放激素(CRH)含量降低, Y50与Y100组之间差异不显著(P>0.05), 而脑组织中各组差异不显著(P>0.05); 血清中α-黑素细胞刺激素(α-MSH)含量, Y100组高于其他组(P<0.05), 而脑组织中各组差异不显著(P>0.05)。上述结果表明, 随着氧化鱼油替代普通鱼油的比例提高, 5级黑色素细胞比例上升, 黄颡鱼血清和脑组织中能互相转换的ACTH与α-MSH总量提高, 变化趋势与表皮黑色素含量和酪氨酸酶活性相一致。  相似文献   

7.
Dietary fish oil increases levels of (n-3) fatty acids in the brain and retina of younger animals but has less effect in adults. The duration of the effects of fish oil in young animals, as well as the extent of reversibility of the effects, are unknown. Laying hens were fed either a fish oil diet or a soybean oil-based control diet. Resulting chicks were assigned to three diet groups: chicks from fish oil and soybean oil hens were continued on fish oil and soybean oil diets, respectively, for 0, 3, 6, or 9 weeks, and additional chicks from the fish oil hens were fed the fish oil diet for 0, 3, or 6 weeks and then reversed to the soybean oil diet for a period of 3 weeks. The fatty acid composition of the brain, retina, liver, and serum of the reversal chicks was compared with chicks fed the fish oil diet only or the soybean oil diet only. Brain levels of docosahexaenoic acid (22:6(n-3)) decreased substantially when reversal from the fish oil diet to the control diet was begun at hatching, but did not decrease when reversal was begun at later times. Other (n-3) fatty acids in the brain, docosapentaenoic acid (22:5(n-3)) and eicosapentaenoic acid (20:5(n-3)), decreased substantially at all ages, and to a greater extent than 22:6(n-3). Brain arachidonic acid (20:4(n-6)), which was low in fish oil chicks, rose to control after reversal at hatching, but recovered only partially when reversal was begun at later times. A similar patterns was observed in the retina. Serum and liver (n-3) fatty acids fell to control in all reversal chicks, and (n-6) fatty acids increased to control, except in chicks reversed at 6 weeks. This study demonstrates that by 3 weeks of age the chick brain strongly resists diet-induced lowering of high levels of 22:6(n-3).  相似文献   

8.
Changes in the activity of brain antioxidant superoxide dismutases (SOD) were followed in newborn and young female rats 8, 15, 30, 45, 60 and 75 days after birth treated with olive oil. In newborn rats, the content of brain cytosol SOD (CuZnSOD) and mitochondrial SOD (MnSOD) decreased after treatment with olive oil. However, in the brain of rats aged 8 days this effect was lost. The suppressive effect of olive oil on these enzymes reappeared again in 15-day-old rats. In rats aged one month, only the activity of CuZnSOD was reduced after olive oil treatment. In the brain of rats aged 45, 60 and 75 days, neither MnSOD nor CuZnSOD were affected by olive oil. The different effects of olive oil on the brain SOD, during ontogeny suggest that profound changes in the susceptibility of nervous tissue antioxidant enzymes to olive oil take place during sexual maturation.  相似文献   

9.
Kim  Kye S.  Park  Eek J.  Lee  Chul W.  Joo  Han T.  Yeo  Young K. 《Neurochemical research》1997,22(10):1291-1297
The effect of feeding rats for 30 days with diets containing high levels of linoleic acid (sunflower oil, SO) or -linolenic acid (perilla oil, PO) was studied in the liver, kidney and brain. The PO group showed a higher labeling of choline glycerophospholipids (CGP) in liver and kidney but no difference with the SO group in ethanolamine glycerophospholipids (EGP) labeling. The brain displayed the lowest incorporation of both precursors and no difference between the two diets. Analyses of brain CGP and EGP fatty acid compositions showed that in the PO group the ratio n-6/n-3 was lower than in the SO group, mainly as a consequence of lower levels of n-6 fatty acids. The mole % of docosahexaenoate (DHA) in these lipids was the same for both groups and only triacylglycerols (TAG) displayed a higher DHA. Therefore, at least in the brain, the magnitude of fatty acid changes observed in CGP and EGP for the PO group does not affect the uptake/incorporation of the precursors into phospholipids.  相似文献   

10.
Feeding adult rats a 17% corn-oil diet for 8 weeks did not change brain polyunsaturated fatty acids (PUFA) compared to rats fed 2.2% corn oil (with 2.2% lard added). When the corn-oil diet was supplemented with 14.5% cod liver oil or 12.5% salmon oil, the fatty acid composition of brain PUFA was significantly altered, even if alpha-tocopherol was added to the salmon-oil diet. Comparing salmon-oil- and cod-liver-oil-fed animals with corn-oil-fed animals, arachidonic acid 22:4(n-6) and 22:5(n-6) were reduced, and 20:5(n-3), 22:5(n-3) and 22:6(n-3) were increased. Liver fatty acids were also significantly altered. Thus, the brain is not protected against a large excess of very-long-chain n-3 PUFA, which increase n-3/n-6 ratio and could lead to abnormal function, and which might be difficult to reverse.  相似文献   

11.
Previous studies have suggested that docosahexaenoic acid (DHA), contained in fish oil, prevents brain disease. In the current study, the effect of fish oil feeding on gene expression in the brain was investigated by suppression subtractive hybridization. We found that pyruvate dehydrogenase E1 alpha (PDHE1alpha) mRNA expression is down-regulated by fish oil feeding. We examined whether the expression of PDHE1alpha mRNA is altered by DHA treatment in differentiated PC12 cells. PDHE1alpha mRNA was reduced by supplementation of DHA with a significant decrease in cellular ATP level. These results indicate that fish oil feeding might modulate energy metabolism in the brain.  相似文献   

12.
Rats fed a semipurified diet supplemented with 3% (w/w) safflower oil [Saf, n-3 fatty acid deficient, high linoleic acid (18:2n-6)] through two generations exhibit decreased correct response ratios in a brightness-discrimination learning test compared with rats fed 3% perilla oil [Per, high alpha-linolenic acid (18:3n-3)]. This is associated with a decreased DHA (22:6n-3)-to-arachidonic acid (20:4n-6) ratio in brain lipids. In the first set of experiments, dietary oil was shifted from Saf to a mixture of 2.4% safflower oil plus 0.6% DHA after weaning (Saf-DHA), but all parameters measured in the learning test were essentially unchanged. Brain 22:6n-3 content of the Saf-DHA group reached that of the Per group but the levels of 20:4n-6 and docosatetraenoic acid (22:4n-6) did not decrease to those of the Per group at the start of the test. In the second set of experiments, dietary oil was shifted to a mixture of 0.6% safflower oil plus 1.2% oleic acid (OA) plus 1.2% DHA (Saf-OA-DHA group) with 18:2n-6 content comparable to that of the Per group. The Saf-OA-DHA group exhibited a learning performance similar to that of the Per group; brain 22:6n-3, 20:4n-6, and 22:4n-6 contents were also comparable to those of the Per group. These results indicate that the altered learning behavior associated with a long-term n-3 fatty acid deficiency is reversed by supplementing 22:6n-3 after weaning, when the levels of competing n-6 fatty acids in the diet and brain lipids are limited.  相似文献   

13.
Effects of soybean oil supplementation as a source of linoleic and α-linolenic acids in a palm oil diet on growth and docosapentaenoic acid (22: 5n–6) levels in tissue lipids in male Sprague–Dawley rats were studied. The rats fed for two months with the diets containing soybean oil (10–50%) in palm oil showed significantly higher weight gain than that in rats fed a diet containing only palm oil as a fat source. The highest weight gain was observed in rats fed 50% soybean oil blended in palm oil. Such performance was also better than those observed in rats received diets containing soybean oil alone or canola oil alone. Addition of soybean oil to the palm oil diet prevented 22: 5n–6 accumulation in plasma, red blood cells, liver, heart, and retinal lipids with a compensative increase of docosahexaenoic acid (22:6n–3). Poly-unsaturated fatty acid profiles of brain were not affected by the addition of soybean oil. Changes in arachidonic acid contents in organs were not observed. The results indicated that soybean oil supplementation increases the weight gain and prevents the accumulation of 22: 5n–6 in the tissues which were observed in the rats fed a diet containing palm oil alone.  相似文献   

14.
We studied the effects of essential oils from oregano and clove and a mixture of lemon essential oil and a ginger extract on the antioxidant state of organs in intact and three experimental groups of Balb/c mice. We found that in vivo essential oils were efficient bioantioxidants when mice were treated with it for 6 months even at very low doses, such as 300 ng/day. All studied essential oils inhibited lipid peroxidation (LPO) in the membranes of erythrocytes that resulted in increasing membrane resistance to spontaneous hemolysis, decreasing membrane microviscosity, maintenance of their integrity, and functional activity. The essential oil significantly decreased the LPO intensity in the liver and the brain of mice and increased the resistance of liver and brain lipids to oxidation and the activity of antioxidant enzymes in the liver. The most expressed bioantioxidant effect on erythrocytes was observed after clove oil treatment, whereas on the liver and brain, after treatment with a mixture of lemon essential oil and a ginger extract.  相似文献   

15.
Abstract: In a previous work, we calculated the dietary α-linolenic requirements (from vegetable oil triglycerides) for obtaining and maintaining a physiological level of (n-3) fatty acids in developing animal membranes as determined by the cervonic acid content [22:6(n-3), docosahexaenoic acid]. The aim of the present study was to measure the phospholipid requirement, as these compounds directly provide the very long polyunsaturated fatty acids found in membranes. Two weeks before mating, eight groups of female rats (previously fed peanut oil deficient in α-linolenic acid) were fed different semisynthetic diets containing 6% African peanut oil supplemented with different quantities of phospholipids obtained from bovine brain lipid extract, so as to add (n-3) polyunsaturated fatty acids to the diet. An additional group was fed peanut oil with rapeseed oil, and served as control. Pups were fed the same diet as their respective mothers, and were killed at weaning. Forebrain, sciatic nerve, retina, nerve endings, myelin, and liver were analyzed. We conclude that during the combined maternal and perinatal period, the (n-3) fatty acid requirement for adequate deposition of (n-3) polyunsaturated fatty acids in the nervous tissue (and in liver) of pups is lower if animals are fed (n-3) very long chain polyunsaturated fatty acids found in brain phospholipids [this study, ˜60 mg of (n-3) fatty acids/100 g of diet, i.e., ˜130 mg/1,000 kcal] rather than α-linolenic acid from vegetable oil triglycerides [200 mg of (n-3) fatty acids/100 g of diet, i.e., ˜440 mg/1,000 kcal].  相似文献   

16.
The aim of this study was to determine any age-related changes in phospholipid polyunsaturated fatty acid composition, in particular C20 and C22 fatty acids in rat liver, brain, kidney and heart, and to assess and compare the effects of dietary supplementation (42.5 mg/kg body weight/day) of the natural antioxidant thyme oil and its major component thymol throughout the rat life span. The fatty acid composition in the various tissues from young (7 months) and aged (28 months) rats was determined and compared. Livers from aged control, thyme oil and thymol treated rats exhibited an increase in 22:6(n-3). In contrast, 22:6(n-3) content of brain, kidney and heart declined in aged rats in all three dietary groups. However, aged rats treated with thyme oil and thymol displayed significantly higher levels of 22:6(n-3) than the respective age-matched controls. Tissue compositions of 20:4(n-6) were found to be significantly lower in the liver and kidney from aged control rats but not those fed either thyme oil or thymol. In aged rats, the composition of 20:4(n-6) in all tissues was highest in rats fed either thyme oil or thymol. These results show that dietary supplementation with thyme oil tended to maintain higher PUFA levels in all tissues studied. The majority of protection provided by thyme oil was by virtue of its thymol component, which comprises 49% of the whole oil. Thymol administered alone did not provide significantly higher protection than the whole oil, suggesting that other components within thyme oil are also contributing antioxidant activity.  相似文献   

17.
Abstract: Biochemical characteristics of brain microsomal membranes were examined before and after the brightness-discrimination learning tasks in rats that were fed either safflower oil (α-linolenate-deficient) or perilla oil (α-linolenate-sufficient) diets. We detected small changes in the chain elongation system for polyunsaturated fatty acids in microsomes, whereas no significant difference was detected in the inositol trisphosphate-induced calcium release and ATP-induced calcium uptake profiles of microsomes between the two dietary groups. The calcium ion-induced aggregation rate of microsomes was determined in both groups. We found that the aggregation rate of microsomes in the safflower oil group was significantly greater than that in the perilla oil group. The difference in susceptibility of microsomal membrane phospholipids to phospholipase A2 between the groups was obvious, and the amount of released fatty acids by phospholipase A2 from the perilla oil group microsomes was nearly half of that from the safflower oil group microsomes after the learning task. Susceptibility of sialic acids on the brain microsomal membranes to exogenous sialidase was different only after the learning task in the safflower and perilla oil groups. These results suggest that the biochemical characteristics of membrane surfaces of brain microsomes are affected significantly by the learning task itself in a dietary oil-dependent manner.  相似文献   

18.
The effects of an oral fish oil treatment regimen on sensorimotor, blood–brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15 mL/kg fish oil (2.01 g/kg EPA, 1.34 g/kg DHA) or soybean oil dose via oral gavage 30 min prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9 gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood–brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9.  相似文献   

19.
The aim of this study was to determine any age-related changes in phospholipid polyunsaturated fatty acid composition, in particular C20 and C22 fatty acids in rat liver, brain, kidney and heart, and to assess and compare the effects of dietary supplementation (42.5 mg/kg body weight/day) of the natural antioxidant thyme oil and its major component thymol throughout the rat life span. The fatty acid composition in the various tissues from young (7 months) and aged (28 months) rats was determined and compared. Livers from aged control, thyme oil and thymol treated rats exhibited an increase in 22:6(n–3). In contrast, 22:6(n–3) content of brain, kidney and heart declined in aged rats in all three dietary groups. However, aged rats treated with thyme oil and thymol displayed significantly higher levels of 22:6(n–3) than the respective age-matched controls. Tissue compositions of 20:4(n–6) were found to be significantly lower in the liver and kidney from aged control rats but not those fed either thyme oil or thymol. In aged rats, the composition of 20:4(n–6) in all tissues was highest in rats fed either thyme oil or thymol. These results show that dietary supplementation with thyme oil tended to maintain higher PUFA levels in all tissues studied. The majority of protection provided by thyme oil was by virtue of its thymol component, which comprises 49% of the whole oil. Thymol administered alone did not provide significantly higher protection than the whole oil, suggesting that other components within thyme oil are also contributing antioxidant activity.  相似文献   

20.
The brains and retinas of laboratory animals fixed by perfusion occasionally contain isolated round fat emboli, which increase in number if the two organs are covered with oil during the autopsy. These emboli, in contrast to emboli induced by intravenous injection of oil, are present in smaller numbers, occur without adjacent aggregation of erythrocytes and do not cause widening of the occluded vascular channel. The fat emboli in the normal brain are attributed to connective tissue fat aggregating on the exposed cerebral surface and flowing through openings cut in the leptomeninges and the vascular walls during removal of the brain. Their formation could not be entirely prevented by covering the brain with running water or by submerging the forepart of the animal's body in water during the autopsy. Nevertheless, such a procedure is recommended to avoid introduction of extraneous fat when in a given experiment the question of fat embolism arises. Fat emboli demonstrable in the flattened retina of the cat and the mulatta monkey are ascribed to aspiration of retrobulbar connective tissue fat; they can be prevented by placing a ligature around the optic nerve prior to removal of the eye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号