首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The reactions of horse heart cytochrome c with succinate-cytochrome c reductase and cytochrome oxidase were studied as a function of ionic strength using both spectrophotometric and oxygen electrode assay techniques. The kinetic parameter Vmax/Km for both reactions decreased very rapidly as the ionic strength was increased, indicating that electrostatic interactions were important to the reactions. A new semiempirical relationship for the electrostatic energy of interaction between cytochrome c and its oxidation-reduction partners was developed, in which specific complementary charge-pair interactions between lysine amino groups on cytochrome c and negatively charged carboxylate groups on the other protein are assumed to dominate the interaction. The contribution of individual cytochrome c lysine amino groups to the electrostatic interaction was estimated from the decrease in reaction rate caused by specific modification of the lysine amino groups by reagents that change the charge to 0 or -1. These estimates range from -0.9 kcal/mol for lysines immediately surrounding the heme crevice of cytochrome c to 0 kcal/mol for lysines well removed from the heme crevice region. The semiempirical relationship for the total electrostatic energy of interaction was in quantitative agreement with the experimental ionic strength dependence of the reaction rates when the parameters were based on the specific lysine modification results. The electrostatic energies of interaction between cytochrome c and its reductase and oxidase were nearly the same, providing additional evidence that the two reactions take place at similar sites on cytochrome c.  相似文献   

3.
4.
We have devised a relatively simple method for the purification of cytochrome aa3 of Paracoccus denitrificans with three major subunits similar to those of the larger subunits of the mitochondrial cytochrome oxidase. This preparation has no c-type cytochrome. Studies were made of the oxidation of soluble cytochromes c from bovine heart and Paracoccus. The cytochrome-c oxidase activity was stimulated by low concentrations of either cytochrome c, providing an explanation for the multiphasic nature of plots of v/S versus v. Kinetics of the oxidation of bovine cytochrome c by the Paracoccus oxidase resembled those of bovine oxidase with bovine cytochrome c in every way; the Paracoccus oxidase with bovine cytochrome c can serve as an appropriate model for the mitochondrial system. The kinetics of the oxidation of the soluble Paracoccus cytochrome c by the Paracoccus oxidase were different from those seen with bovine cytochrome c, but resembled the latter if poly(L-lysine) was added to the assays. The important difference between the two species of cytochrome c is the more highly negative hemisphere on the side of the molecule way from the heme crevice in the Paracoccus cytochrome. Thus, the data emphasize the importance of all of the charged groups on cytochrome c in influencing the binding or electron transfer reactions of this oxidation-reduction system. The data also permit some interesting connotations about the possible evolution from the bacterial to the mitochondrial electron transport system.  相似文献   

5.
6.
The effect of intraliposomal ADP and ATP on the kinetics of cytochrome c oxidation in reconstituted bovine heart cytochrome c oxidase was measured by the photometric and polarographic method: 1. Intraliposomal ADP decreases and intraliposomal ATP increases the Km for cytochrome c when measured by the photometric assay under uncoupled conditions. 2. The above described effects are not obtained when the kinetics are measured with the polarographic assay. 3. Extraliposomal ATP increases the Km for cytochrome c similar to intraliposomal ATP, but this effect is measured with both methods of assay. 4. Under coupled conditions only a small decrease of the Km for cytochrome c by intraliposomal ADP is found.  相似文献   

7.
《BBA》2023,1864(2):148956
The crystal structure of bovine cytochrome c oxidase (CcO) shows a sodium ion (Na+) bound to the surface of subunit I. Changes in the absorption spectrum of heme a caused by calcium ions (Ca2+) are detected as small red shifts, and inhibition of enzymatic activity under low turnover conditions is observed by addition of Ca2+ in a competitive manner with Na+. In this study, we determined the crystal structure of Ca2+-bound bovine CcO in the oxidized and reduced states at 1.7 Å resolution. Although Ca2+ and Na+ bound to the same site of oxidized and reduced CcO, they led to different coordination geometries. Replacement of Na+ with Ca2+ caused a small structural change in the loop segments near the heme a propionate and formyl groups, resulting in spectral changes in heme a. Redox-coupled structural changes observed in the Ca2+-bound form were the same as those previously observed in the Na+-bound form, suggesting that binding of Ca2+ does not severely affect enzymatic function, which depends on these structural changes. The relation between the Ca2+ binding and the inhibitory effect during slow turnover, as well as the possible role of bound Ca2+ are discussed.  相似文献   

8.
《BBA》2020,1861(9):148237
Cytochrome a was suggested as the key redox center in the proton pumping process of bovine cytochrome c oxidase (CcO). Recent studies showed that both the structure of heme a and its immediate vicinity are sensitive to the ligation and the redox state of the distant catalytic center composed of iron of cytochrome a3 (Fea3) and copper (CuB). Here, the influence of the ligation at the oxidized Fea33+–CuB2+ center on the electron–proton coupling at heme a was examined in the wide pH range (6.5-11). The strength of the coupling was evaluated by the determination of pH dependence of the midpoint potential of heme a (Em(a)) for the cyanide (the low-spin Fea33+) and the formate-ligated CcO (the high-spin Fea33+). The measurements were performed under experimental conditions when other three redox centers of CcO are oxidized. Two slightly differing linear pH dependencies of Em(a) were found for the CN– and the formate–ligated CcO with slopes of −13 mV/pH unit and −23 mV/pH unit, respectively. These linear dependencies indicate only a weak and unspecific electron–proton coupling at cytochrome a in both forms of CcO. The lack of the strong electron–proton coupling at the physiological pH values is also substantiated by the UV–Vis absorption and electron–paramagnetic resonance spectroscopy investigations of the cyanide–ligated oxidized CcO. It is shown that the ligand exchange at Fea3+ between His–Fea3+–His and His–Fea3+–OH occurs only at pH above 9.5 with the estimated pK >11.0.  相似文献   

9.
Approximately 30% of the iron contained in a bovine heart cytochrome c oxidase preparation was removed by crystallization, giving a molecular extinction coefficient 1.25-1.4 times higher than those reported thus far. Six electron equivalents provided by dithionite were required for complete reduction of the crystalline cytochrome c oxidase preparation. The fully reduced enzyme was oxidized with 4 oxidation equivalents provided by molecular oxygen, giving an absorption spectrum slightly, but significantly, different from that of the original fully oxidized form. Four electron equivalents were required for complete reduction of the O(2)-oxidized enzyme. The O(2)-oxidized form, when exposed to excess amounts of O(2), was converted to the original oxidized form which required 6 electrons for complete reduction. A slow reduction of the O(2)-oxidized form without any external reductant added indicates the existence of internal electron donors for heme irons in the enzyme. These results suggest that the 2 extra oxidation equivalents in the original oxidized form, compared with the O(2)-oxidized form, are due to a bound peroxide produced by O(2) and electrons from the internal donors, consistently with a peroxide at the O(2) reduction site in the crystal structure of the enzyme (Yoshikawa, S., Shinzawa-Itoh, K. , Nakashima, R., Yaono, R., Yamashita, E., Inoue, N., Yao, M., Fei, M. J., Peters Libeu, C., Mizushima, T., Yamaguchi, H., Tomizaki, T., and Tsukihara, T. (1998) Science 280, 1723-1729).  相似文献   

10.
Oxidised cytochrome c oxidase is known to react with two molecules of hydrogen peroxide to form consecutively 607 nm 'Peroxy' and 580-nm 'Ferryl' species. These are widely used as model compounds for the equivalent P and F intermediates of the catalytic cycle. However, kinetic analysis of the reaction with H(2)O(2) in the pH range 6.0-9.0 reveals a more complex situation. In particular, as the pH is lowered, a 580-nm compound can be formed by reaction with a single H(2)O(2). This species, termed F(&z.rad;), is spectrally similar, but not identical, to F. The reactions are equivalent to those previously reported for the bo type quinol oxidase from Escherichia coli (T. Brittain, R.H. Little, C. Greenwood, N.J. Watmough, FEBS Lett. 399 (1996) 21-25) where it was proposed that F(&z.rad;) is produced directly from P. However, in the bovine oxidase F(&z.rad;) does not appear in samples of the 607-nm form, P(M), produced by CO/O(2) treatment, even at low pH, although this form is shown to be identical to the H(2)O(2)-derived P state, P(H), on the basis of spectral characteristics and kinetics of reaction with H(2)O(2). Furthermore, lowering the pH of a sample of P(M) or P(H) generated at high pH results in F(&z.rad;) formation only on a minutes time scale. It is concluded that P and F(&z.rad;) are not in a rapid, pH-dependent equilibrium, but instead are formed by distinct pathways and cannot interconvert in a simple manner, and that the crucial difference between them lies in their patterns of protonation.  相似文献   

11.
Complex formation between cytochrome c oxidase and cytochrome c perturbs the optical absorption spectrum of heme c and heme a in the region of the alpha-, beta, and gamma-bands. The perturbations have been used to titrate cytochrome c oxidase with cytochrome c. A stoichiometry of one molecule of cytochrome c bound per molecule of cytochrome c oxidase is obtained (1 heme c per heme aa3). In contrast, a stoichiometry of 2:1 was found earlier using a gel-filtration method (Rieder, R., and Bosshard, H.R. (1978) J. Biol. Chem. 253, 6045-6053). From the result of the spectrophotometric titration and from the wavelength position of the perturbation signals it is concluded that cytochrome c oxidase contains only a single binding site for cytochrome c which is close enough to heme a to function as an electron transfer site. The second site detected earlier by the gel-filtration method must be remote from this electron transfer site. Scatchard plots of the titration data are curvilinear, possibly indicating interactions between cytochrome c-binding sites on adjacent monomers of dimeric cytochrome c oxidase. The relationship between cytochrome c binding and the reaction of cytochrome c oxidase with ferrocytochrome c is discussed.  相似文献   

12.
Cytochrome c oxidase (CcO) is the terminal enzyme in the respiratory electron transport chain of aerobic organisms. It catalyses the reduction of atmospheric oxygen to water, and couples this reaction to proton pumping across the membrane; this process generates the electrochemical gradient that subsequently drives the synthesis of ATP. The molecular details of the mechanism by which electron transfer is coupled to proton pumping in CcO is poorly understood. Recent calculations from our group indicate that His291, a ligand of the Cu(B) center of the enzyme, may play the role of the pumping element. In this paper we describe calculations in which a DFT/continuum electrostatic method is used to explore the coupling of the conformational changes of Glu242 residue, the main proton donor of both chemical and pump protons, to its pKa, and the pKa of His291, a putative proton loading site of our pumping model. The computations are done for several redox states of metal centers, different protonation states of Glu242 and His291, and two well-defined conformations of the Glu242 side chain. Thus, in addition to equilibrium redox/protonation states of the catalytic cycle, we also examine the transient and intermediate states. Different dielectric models are employed to investigate the robustness of the results, and their viability in the light of the proposed proton pumping mechanism of CcO. The main results are in agreement with the experimental measurements and support the proposed pumping mechanism. Additionally, the present calculations indicate a possibility of gating through conformational changes of Glu242; namely, in the pumping step, we find that Glu242 needs to be reprotonated before His291 can eject a proton to the P-site of membrane. As a result, the reprotonation of Glu can control proton release from the proton loading site.  相似文献   

13.
The 1.9 A resolution X-ray structure of the O2 reduction site of bovine heart cytochrome c oxidase in the fully reduced state indicates trigonal planar coordination of CuB by three histidine residues. One of the three histidine residues has a covalent link to a tyrosine residue to ensure retention of the tyrosine at the O2 reduction site. These moieties facilitate a four electron reduction of O2, and prevent formation of active oxygen species. The combination of a redox-coupled conformational change of an aspartate residue (Asp51) located near the intermembrane surface of the enzyme molecule and the existence of a hydrogen bond network connecting Asp51 to the matrix surface suggest that the proton-pumping process is mediated at Asp51. Mutation analyses using a gene expression system of the Asp51-containing enzyme subunit yield results in support of the proposal that Asp51 plays a critical role in the proton pumping process.  相似文献   

14.
Parul D  Palmer G  Fabian M 《Biochemistry》2005,44(11):4562-4571
Three forms of cytochrome c oxidase, fully oxidized CcO (CcO-O), oxidized CcO complexed with cyanide (CcO.CN), and mixed valence CcO, in which both heme a(3) and Cu(B) are reduced and stabilized by carbon monoxide (MV.CO), were investigated by optical spectroscopy, MCD, and stopped-flow for the pH sensitivity of spectral features. In the pH range between pH 5.7 and 9.0, both heme a and heme a(3) in CcO-O interact with a single protolytic group. From the variation of the position of the Soret peak with changes in pH, a pK(a) of 6.6 +/- 0.2 was determined for this group. The pH sensitivity of heme a(3) is lost in the CcO.CN complex, and only heme a responds to pH changes. In MV.CO the spectra of both hemes are almost independent of pH between 5.7 and 11.0. The stoichiometry of proton uptake in the conversion of CcO-O both to MV.CO and to fully reduced CcO was determined between pH 5.8 and pH 8.2. Formation of MV.CO from CcO-O was accompanied by the uptake of approximately two protons, and this value was almost independent of pH. Full reduction of oxidized CcO was associated with the uptake of approximately 2 H(+) at basic pH, and this value increases with decreasing pH. On the basis of these proton uptake measurements, it is concluded that the pK(a) of the group is independent of the redox state of CcO. It is suggested that Glu60 of subunit II, located at the entrance of the proton conducting K-channel, is the protolytic residue that interacts with both hemes through a hydrogen-bonding network.  相似文献   

15.
Among the X-ray structures of bovine heart cytochrome c oxidase (CcO), reported thus far, the highest resolution is 1.8?. CcO includes 13 different protein subunits, 7 species of phospholipids, 7 species of triglycerides, 4 redox-active metal sites (Cu(A), heme a (Fe(a)), Cu(B), heme a(3) (Fe(a3))) and 3 redox-inactive metal sites (Mg(2+), Zn(2+) and Na(+)). The effects of various O(2) analogs on the X-ray structure suggest that O(2) molecules are transiently trapped at the Cu(B) site before binding to Fe(a3)(2+) to provide O(2)(-). This provides three possible electron transfer pathways from Cu(B), Fe(a3) and Tyr244 via a water molecule. These pathways facilitate non-sequential 3 electron reduction of the bound O(2)(-) to break the OO bond without releasing active oxygen species. Bovine heart CcO has a proton conducting pathway that includes a hydrogen-bond network and a water-channel which, in tandem, connect the positive side phase with the negative side phase. The hydrogen-bond network forms two additional hydrogen-bonds with the formyl and propionate groups of heme a. Thus, upon oxidation of heme a, the positive charge created on Fe(a) is readily delocalized to the heme peripheral groups to drive proton-transport through the hydrogen-bond network. A peptide bond in the hydrogen-bond network and a redox-coupled conformational change in the water channel are expected to effectively block reverse proton transfer through the H-pathway. These functions of the pathway have been confirmed by site-directed mutagenesis of bovine CcO expressed in HeLa cells.  相似文献   

16.
Modeling studies suggest that electrons are transferred from cytochrome c to cytochrome c peroxidase (CcP) with cytochrome c predominantly bound at a site facing the gamma-meso edge of the CcP prosthetic heme group (Poulos, T.L., and Kraut, J. (1980) J. Biol. Chem. 255, 10322-10330). As shown here, guaiacol and ferrocyanide are oxidized at a different site of CcP. Thus, the oxidations of cytochrome c and guaiacol are differentially inactivated by phenylhydrazine and sodium azide. The loss of guaiacol oxidation activity correlates with covalent binding of 1 equivalent of [14C]phenylhydrazine to the protein, whereas the slower loss of cytochrome c activity correlates with the appearance of a 428-nm absorbance maximum attributed to the formation of a sigma-phenyl-iron heme complex. The delta-meso-phenyl and 8-hydroxymethyl derivatives of heme are formed as minor products. Catalytic oxidation of azide to the azidyl radical results in inactivation of CcP and formation of delta-meso-azidoheme. Reconstitution of apo-CcP with delta-meso-azido-, -ethyl-, and -(2-phenylethyl)heme yields holoproteins that give compound I species with H2O2 and exhibit 80, 59, and 31%, respectively, of the control kcat value for cytochrome c oxidation but little or no guaiacol or ferrocyanide oxidizing activity. Conversely, CcP reconstituted with gamma-meso-ethylheme is fully active in the oxidation of guaiacol and ferrocyanide but only retains 27% of the cytochrome c oxidizing activity. These results indicate that guaiacol and ferrocyanide are primarily oxidized near the delta-meso-heme edge rather than, like cytochrome c, at a surface site facing the gamma-meso edge.  相似文献   

17.
Zinc is a constituent of bovine heart cytochrome c oxidase preparations   总被引:2,自引:0,他引:2  
Cytochrome c oxidase preparations from bovine heart muscle contain 1 zinc per 2 irons. Metal contents of nine preparations determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) show that Cu, Fe and Zn are the only metals present in significant amounts with average Cu/Fe, Fe/Zn, and Cu/Zn atom ratios of 1.3, 2.1 and 2.8, respectively. Removal of adventitious copper results in a Cu:Fe:Zn stoichiometry of 2:2:1. The zinc is tightly bound. Dialysis against a solution of 1,10-phenanthroline at pH 7.4 or an acidic buffer (pH 4.4) does not remove Zn. Dialysis against 0.8 M KCN at pH 10 causes partial loss of both Cu and Zn. This is the first evidence for the presence of Zn in a cytochrome c oxidase.  相似文献   

18.
Two radicals have been detected previously by electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopies in bovine cytochrome oxidase after reaction with hydrogen peroxide, but no correlation could be made with predicted levels of optically detectable intermediates (P(M), F and F(z.rad;)) that are formed. This work has been extended by optical quantitation of intermediates in the EPR/ENDOR sample tubes, and by comparison with an analysis of intermediates formed by reaction with carbon monoxide in the presence of oxygen. The narrow radical, attributed previously to a porphyrin cation, is detectable at low levels even in untreated oxidase and increases with hydrogen peroxide treatments generally. It is presumed to arise from a side-reaction unrelated to the catalytic intermediates. The broad radical, attributed previously to a tryptophan radical, is observed only in samples with a significant level of F(z.rad;) but when F(z.rad;) is generated with hydrogen peroxide, is always accompanied by the narrow radical. When P(M) is produced at high pH with CO/O(2), no EPR-detectable radicals are formed. Conversion of the CO/O(2)-generated P(M) into F(z.rad;) when pH is lowered is accompanied by the appearance of a broad radical whose ENDOR spectrum corresponds to a tryptophan cation. Quantitation of its EPR intensity indicates that it is around 3% of the level of F(z.rad;) determined optically. It is concluded that low pH causes a change of protonation pattern in P(M) which induces partial electron redistribution and tryptophan cation radical formation in F(z.rad;). These protonation changes may mimic a key step of the proton translocation process.  相似文献   

19.
  • 1.1. The pyridoxal phosphate (PLP) modification of the lysine amino groups in cytochrome c causes decrease in the reaction rate with cytochrome c oxidase.
  • 2.2. The rate constants for (PLP);-cyt. c, PLP(Lys 86)-cyt. c, PLP(Lys 79)-cyt. c and native cytochrome c (at pH 7.4, 1=0.02) are 3.6 × 10−3'sec-', 5.5 × 10−3, 5.2 × 10−3-'sec−1 and 9.8 × 10−3sec−1, respectively.
  • 3.3. In spite of the same positive charge of singly PLP-cytochromes c the reaction between PLP(Lys 86)-cyt. c and cyt. c oxidase exhibits the ionic strength dependence that differs from those of the PLP(Lys 79)-cyt. c.
  • 4.4. The rate constants at zero and infinite ionic strength for PLP(Lys 86)-cyt. c is 2-fold less than that for PLP(Lys 79)-cyt. c.
  • 5.5. The positively charged cytochrome c lysines 86 and 79 form two from four or five predicted complementary charge interactions with carboxyl groups on cytochrome c oxidase.
  相似文献   

20.
The structures of membrane proteins are difficult to obtain by crystallography and may be altered by the detergents used in their extraction. X-ray absorption spectroscopy has been used to identify the structures of the copper atoms of the membrane-bound enzyme in mitochondria and in submitochondrial particles at respective concentrations of 100 and 200 micron of molar copper. To within the experimental error, the x-ray absorption spectra of the copper atoms of the membrane-bound and the Yonetani (Yonetani, T. (1961) J. Biol. Chem. 236, 1680-1688) purified oxidase are identical; all detectable shells of the active site indicate no alteration of structural parameters. Significant differences are found when compared to the Hartzell-Beinert (Hartzell, R. C., and Beinert, H. (1974) Biochim. Biophys. Acta 368, 318-338) preparation. Extended x-ray absorption fine structure technology is now adequate for the direct studies of membrane proteins in situ in their natural environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号