首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Bacillus stearothermophilus PV72 expresses different S-layer genes (sbsA and sbsB) under different growth conditions. No stretches of significant sequence identity between sbsA and sbsB were detected. In order to investigate S-layer gene regulation in B. stearothermophilus PV72, we characterized the upstream regulatory region of sbsA and sbsB by sequencing and primer extension analysis. Both genes are transcribed from unique but different promoters, independently of the growth phase. Localization of sbsB in the sbsA-expressing strain PV72/p6 revealed that the coding region of the second S-layer gene sbsB is located not on the chromosome but on a natural megaplasmid of the strain, whereas the upstream regulatory region of sbsB was exclusively detected on the chromosome of PV72/p6. For sbsB expression, the coding region has to be integrated into the chromosomally located expression site. After the switch to sbsB expression, the sbsA coding region was removed from the chromosome but could still be detected on the plasmid of the sbsB-expressing strain PV72/p2. The sbsA upstream regulatory region, however, remained on the chromosome. This is the first report of S-layer variation not caused by intrachromosomal DNA rearrangements, but where variant formation depends on recombinational events between the plasmid and the chromosome.  相似文献   

2.
The specific properties of S-layer proteins from three different Bacillus stearothermophilus strains revealing oblique, square, or hexagonal lattice symmetry were preserved during growth in continuous culture on complex medium only under oxygen-limited conditions in which glucose was used as the sole carbon source. When oxygen limitation was relieved, amino acids became metabolized, cell density increased, and different S-layer proteins from wild-type strains became rapidly replaced by a new common type of S-layer protein with an apparent subunit molecular weight of 97,000 which assembled into an identical oblique (p2) lattice type. During switching from wild-type strains to variants, patches of the S-layer lattices characteristics for wild-type strains, granular regions, and areas with oblique lattice symmetry could be observed on the surface of individual cells from all organisms. The granular regions apparently consisted of mixtures of the S-layer proteins from the wild-type strains and the newly synthesized p2 S-layer proteins from the variants. S-layer proteins from wild-type strains possessed identical N-terminal regions but led to quite different cleavage products upon peptide mapping, indicating that they are encoded by different genes. Chemical analysis including N-terminal sequencing and peptide mapping showed that the oblique S-layer lattices synthesized under increased oxygen supply were composed of identical protein species.  相似文献   

3.
During growth of Bacillus stearothermophilus NRS 2004/3a in continuous culture on complex medium, the chemical properties of the S-layer glycoprotein and the characteristic oblique lattice were maintained only if glucose was used as the sole carbon source. With increased aeration, amino acids were also metabolized, accompanied by liberation of ammonium and by changes in the S-layer protein. Depending on the stage of fermentation at which oxygen limitation was relieved, two different variants, one with a more delicate oblique S-layer lattice (variant 3a/V1) and one with a square S-layer lattice (variant 3a/V2), were isolated. During the switch from the wild-type strain to a variant or from variant 3a/V2 to variant 3a/V1, monolayers of two types of S-layer lattices could be demonstrated on the surfaces of single cells. S-layer proteins from variants had different molecular sizes and a significantly lower carbohydrate content than S-layer proteins from the wild-type strain did. Although the S-layer lattices from the wild-type and variant strains showed quite different protein mass distributions in two- and three-dimensional reconstructions, neither the amino acid composition nor the pore size, as determined by permeability studies, was significantly changed. Peptide mapping and N-terminal sequencing results strongly indicated that the three S-layer proteins are encoded by different genes and are not derived from a universal precursor form.  相似文献   

4.
5.
Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1γ chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition.  相似文献   

6.
The cell surface of Bacillus stearothermophilus ATCC 12980 is completely covered by an oblique lattice which consists of the S-layer protein SbsC. On SDS-polyacrylamide gels, the mature S-layer protein migrates as a single band with an apparent molecular mass of 122 kDa. During cultivation of B. stearothermophilus ATCC 12980 at 67 degrees C instead of 55 degrees C, a variant developed that had a secondary cell wall polymer identical to that of the wild-type strain, but it carried an S-layer glycoprotein that could be separated on SDS-polyacrylamide gels into four bands with apparent molecular masses of 92, 118, 150 and 175 kDa. After deglycosylation, only a single protein band with a molecular mass of 92 kDa remained. The complete nucleotide sequence encoding the protein moiety of this S-layer glycoprotein, termed SbsD, was established by PCR and inverse PCR. The sbsD gene of 2,709 bp is predicted to encode a protein of 96.2 kDa with a 30-amino-acid signal peptide. Within the 807 bp encoding the signal peptide and the N-terminal sequence (amino acids 31-269), different nucleotides for sbsD and sbsC were observed in 46 positions, but 70% of these mutations were silent, thus leading to a level of identity of 95% for the N-terminal parts. The level of identity of the remaining parts of SbsD and SbsC was below 10%, indicating that the lysine-, tyrosine- and arginine-rich N-terminal region in combination with a distinct type of secondary cell wall polymer remained conserved upon S-layer variation. The sbsD sequence encoding the mature S-layer protein cloned into the pET28a vector led to stable expression in Escherichia coli HMS174(DE3). This is the first example demonstrating that S-layer variation leads to the synthesis of an S-layer glycoprotein.  相似文献   

7.
The crystalline cell surface layer (S-layer) of Bacillus stearothermophilus PV72 shows hexagonal lattice symmetry and is composed of a single protein species with a molecular weight of 130000. For investigating the regulation of S-layer protein synthesis, Bacillus stearothermophilus PV72 was grown in continuous culture on synthetic PVIII- medium with glucose as carbon source at constant dilution rate of 0.3 h−1 at 57 ° C under different conditions and limitations. A complete outer S-layer and an S-layer protein pool sufficient for formation of about 70% inner S-layer was produced under carbon-limited growth. The inner S-layer results from an S-layer protein pool stored in the peptidoglycan-containing layer of whole cells which can emerge and assemble on the inner face of the rigid cell wall layer during the cell wall preparation procedure. Under oxygen-limited growth, only a complete outer S-layer but no S-layer protein pool was synthesized. Reduction of the methionine concentration of PVIII-medium from 100 to 10 mg l−1 led to a clear decrease in S-layer protein production and to an incomplete outer S-layer. During growth in the presence of excess glucose, S-layer protein synthesis was replaced by that of an exopolysaccharide matrix. After changing to carbon limitation again, the original level of S-layer protein synthesis was achieved after only four volume exchanges. Feeding of casein hydrolysate or aromatic or basic amino acids to the continuous culture induced an irreversible loss of S-layer protein synthesis after from five to ten volume exchanges. In contrast, addition of Gly, Ala, Val, Leu, Ile, Glu, Gln, Asp, Asn, Ser and Thr in different mixtures could significantly stimulate S-layer protein production.  相似文献   

8.
9.
10.
The high-molecular-weight secondary cell wall polymer (SCWP) from Bacillus stearothermophilus PV72/p2 is mainly composed of N-acetylglucosamine (GlcNAc) and N-acetylmannosamine (ManNAc) and is involved in anchoring the S-layer protein via its N-terminal region to the rigid cell wall layer. In addition to this binding function, the SCWP was found to inhibit the formation of self-assembly products during dialysis of the guanidine hydrochloride (GHCl)-extracted S-layer protein. The degree of assembly (DA; percent assembled from total S-layer protein) that could be achieved strongly depended on the amount of SCWP added to the GHCl-extracted S-layer protein and decreased from 90 to 10% when the concentration of the SCWP was increased from 10 to 120 μg/mg of S-layer protein. The SCWP kept the S-layer protein in the water-soluble state and favored its recrystallization on solid supports such as poly-l-lysine-coated electron microscopy grids. Derived from the orientation of the base vectors of the oblique S-layer lattice, the subunits had bound with their charge-neutral outer face, leaving the N-terminal region with the polymer binding domain exposed to the ambient environment. From cell wall fragments about half of the S-layer protein could be extracted with 1 M GlcNAc, indicating that the linkage type between the S-layer protein and the SCWP could be related to that of the lectin-polysaccharide type. Interestingly, GlcNAc had an effect on the in vitro self-assembly and recrystallization properties of the S-layer protein that was similar to that of the isolated SCWP. The SCWP generally enhanced the stability of the S-layer protein against endoproteinase Glu-C attack and specifically protected a potential cleavage site in position 138 of the mature S-layer protein.Many bacteria and archaea possess crystalline bacterial cell surface layers (S-layers) as their outermost cell envelope component (3, 36, 38). S-layers are composed of identical protein or glycoprotein subunits which assemble into two-dimensional crystalline arrays showing oblique, square, or hexagonal lattice symmetry. S-layer subunits from bacteria are linked to each other and to the underlying cell envelope layer by noncovalent interactions and may therefore be isolated from whole cells or cell wall fragments by different procedures involving chaotropic agents, detergents, chelating agents, or high salt concentrations or by alkaline or acidic pH conditions. During removal of the disrupting agents, e.g., by dialysis, the S-layer subunits frequently reassemble into flat sheets or open-ended cylinders (in vitro self-assembly in suspension; for reviews, see references 37 and 38).Studies regarding the binding mechanism between the S-layer protein and the underlying cell envelope layer have shown that in gram-negative bacteria, the N-terminal region of the S-layer subunits recognizes specific lipopolysaccharides in the outer membrane (9, 29, 41). For Aeromonas hydrophila it was found, however, that the C-terminal part of the S-layer protein is essential for interaction with the outer membrane (40). A similar observation was reported for the S-layer protein from the gram-positive Corynebacterium glutamicum. A hydrophobic stretch of 21 amino acids located at the C-terminal end of the S-layer protein was found to interact with a hydrophobic layer in the cell wall proper that most probably consisted of mycolic acid (8). In earlier studies it was suggested that secondary cell wall polymers could represent the binding sites for the S-layer proteins from Bacillus sphaericus (15, 16) and Lactobacillus buchneri (24).Recently, a high-molecular-weight secondary cell wall polymer (SCWP) containing glucose and N-acetylglucosamine (GlcNAc) was extracted from peptidoglycan-containing sacculi of two Bacillus stearothermophilus wild-type strains (PV72/p6 and ATCC 12980 [10]). An SCWP of different chemical composition could be isolated from peptidoglycan-containing sacculi of an oxygen-induced variant strain from B. stearothermophilus PV72/p6 (35). The SCWP produced by this variant strain (B. stearothermophilus PV72/p2) is mainly composed of GlcNAc and N-acetylmannosamine (ManNAc) and shows a molecular weight of about 24,000 (33). Binding studies with proteolytic cleavage fragments and native peptidoglycan-containing sacculi revealed that the N-terminal region is involved in anchoring the S-layer subunits to the rigid cell wall layer (10, 11, 33). Several observations have supported the notion that a specific recognition and binding mechanism exists between the SCWP and the N-terminal region of the S-layer proteins from B. stearothermophilus strains. (i) Despite the overall heterogeneity, S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region and are capable of binding to an SCWP of identical chemical composition. (ii) B. stearothermophilus PV72/p6 and the oxygen-induced p2 variant produce an SCWP of different chemical composition and structure. (iii) The S-layer protein from B. stearothermophilus PV72/p2 did not recognize native peptidoglycan-containing sacculi from B. stearothermophilus wild-type strains as binding sites (35). (iv) The S-layer protein from B. stearothermophilus PV72/p6 (SbsA) and the oxygen-induced p2 variant (SbsB) are encoded by different genes which show little overall identity (19, 20), and only SbsB possesses a typical S-layer homologous (SLH) domain (23) at the N-terminal part.By sequence comparison, SLH domains (23) were identified on the N-terminal part of several S-layer proteins (6, 13, 23, 27, 30) or at the very C-terminal end of cell-associated exoenzymes and exoproteins (21, 22, 25, 26). SLH domains were suggested to anchor these proteins permanently or transiently to the cell surface. So far, evidence for a binding function of an SLH domain was provided for the S-layer protein of Thermus thermophilus (30) and for the outer-layer proteins of the cellulosome complex from Clostridium thermocellum (21, 22).In the present study, the influence of the SCWP on the formation of self-assembly products in suspension and on the recrystallization properties of the S-layer protein from B. stearothermophilus PV72/p2 on solid supports such as poly-l-lysine-coated electron microscopy (EM) grids was investigated. Moreover, studies on the stability of the S-layer protein against endoproteinase Glu-C attack in the presence and the absence of the SCWP were carried out.  相似文献   

11.
The S-layer of Bacillus stearothermophilus PV72/p2 shows oblique lattice symmetry and is composed of identical protein subunits with a molecular weight of 97,000. The isolated S-layer subunits could bind and recrystallize into the oblique lattice on native peptidoglycan-containing sacculi which consist of peptidoglycan of the A1gamma chemotype and a secondary cell wall polymer with an estimated molecular weight of 24,000. The secondary cell wall polymer could be completely extracted from peptidoglycan-containing sacculi with 48% HF, indicating the presence of phosphodiester linkages between the polymer chains and the peptidoglycan backbone. The cell wall polymer was composed mainly of GlcNAc and ManNAc in a molar ratio of 4:1, constituted about 20% of the peptidoglycan-containing sacculus dry weight, and was also detected in the fraction of the S-layer self-assembly products. Extraction experiments and recrystallization of the whole S-layer protein and proteolytic cleavage fragments confirmed that the secondary cell wall polymer is responsible for anchoring the S-layer subunits by the N-terminal part to the peptidoglycan-containing sacculi. In addition to this binding function, the cell wall polymer was found to influence the in vitro self-assembly of the guanidinium hydrochloride-extracted S-layer protein. Chemical modification studies further showed that the secondary cell wall polymer does not contribute significant free amino or carboxylate groups to the peptidoglycan-containing sacculi.  相似文献   

12.
This study has investigated the feasibility of a combination of recombinant surface layer (S-layer) proteins and empty bacterial cell envelopes (ghosts) to deliver candidate antigens for a vaccine against nontypeable Haemophilus influenzae (NTHi) infections. The S-layer gene sbsA from Bacillus stearothermophilus PV72 was used for the construction of fusion proteins. Fusion of maltose binding protein (MBP) to the N-terminus of SbsA allowed expression of the S-layer in the periplasm of Escherichia coli. The outer membrane protein (Omp) 26 of NTHi was inserted into the N-terminal and C-terminal regions of SbsA. The presence of the fused antigen Omp26 was demonstrated by Western blot experiments using anti-Omp26 antisera. Electron microscopy showed that the recombinant SbsA maintained the ability to self-assemble into sheet-like and cylindrical structures. Recombinant E. coli cell envelopes (ghosts) were produced by the expression of SbsA/Omp26 fusion proteins prior to gene E-mediated lysis. Intraperitoneal immunization with these recombinant bacterial ghosts induced an Omp26-specific antibody response in BALB/c mice. These results demonstrate that the NTHi antigen, Omp26, was expressed in the S-layer self-assembly product and this construct was immunogenic for Omp26 when administered to mice in bacterial cell envelopes.  相似文献   

13.
The three-dimensional structure of the Acetogenium kivui surface layer (S-layer) has been determined to a resolution of 1.7 nm by electron crystallographic techniques. Two independent reconstructions were made from layers negatively stained with uranyl acetate and Na-phosphotungstate. The S-layer has p6 symmetry with a center-to-center spacing of approximately 19 nm. Within the layer, six monomers combine to form a ring-shaped core surrounded by a fenestrated rim and six spokes that point towards the axis of threefold symmetry and provide lateral connectivity to other hexamers in the layer. The structure of the A. kivui S-layer protein is very similar to that of the Bacillus brevis middle wall protein, with which it shares an N-terminal domain of homology. This domain is found in several other extracellular proteins, including the S-layer proteins from Bacillus sphaericus and Thermus thermophilus, Omp alpha from Thermotoga maritima, an alkaline cellulase from Bacillus strain KSM-635, and xylanases from Clostridium thermocellum and Thermoanaerobacter saccharolyticum, and may serve to anchor these proteins to the peptidoglycan. To our knowledge, this is the first example of a domain conserved in several S-layer proteins.  相似文献   

14.
A novel cell wall hydrolase encoded by the murA gene of Listeria monocytogenes is reported here. Mature MurA is a 66-kDa cell surface protein that is recognized by the well-characterized L. monocytogenes-specific monoclonal antibody EM-7G1. MurA displays two characteristic features: (i) an N-terminal domain with homology to muramidases from several gram-positive bacterial species and (ii) four copies of a cell wall-anchoring LysM repeat motif present within its C-terminal domain. Purified recombinant MurA produced in Escherichia coli was confirmed to be an authentic cell wall hydrolase with lytic properties toward cell wall preparations of Micrococcus lysodeikticus. An isogenic mutant with a deletion of murA that lacked the 66-kDa cell wall hydrolase grew as long chains during exponential growth. Complementation of the mutant strain by chromosomal reintegration of the wild-type gene restored expression of this murein hydrolase activity and cell separation levels to those of the wild-type strain. Studies reported herein suggest that the MurA protein is involved in generalized autolysis of L. monocytogenes.  相似文献   

15.
Thermoanaerobacterium thermosulfurigenes EM1 has a gram-positive type cell wall completely covered by a surface layer (S-layer) with hexagonal lattice symmetry. The components of the cell envelope were isolated, and the S-layer protein was purified and characterized. S-layer monomers assembled in vitro into sheets with the same hexagonal symmetry as in vivo. Monosaccharide analysis revealed that the S-layer is associated with fucose, rhamnose, mannosamine, glucosamine, galactose, and glucose. The N-terminal 31 amino acid residues of the S-layer protein showed significant similarity to SLH (S-layer homology) domains found in S-layer proteins of different bacteria and in the exocellular enzymes pullulanase, polygalacturonate hydrolase, and xylanase of T. thermosulfurigenes EM1. The xylanase from T. thermosulfurigenes EM1 was copurified with the S-layer protein during isolation of cell wall components. Since SLH domains of some structural proteins have been shown to anchor these proteins noncovalently to the cell envelope, we propose a common anchoring mechanism for the S-layer protein and exocellular enzymes via their SLH domains in the peptidoglycan-containing layer of T. thermosulfurigenes EM1. Received: 23 October 1998 / Accepted: 21 December 1998  相似文献   

16.
During growth on starch medium, the S-layer-carrying Bacillus stearothermophilus ATCC 12980 and an S-layer-deficient variant each secreted three amylases, with identical molecular weights of 58,000, 122,000, and 184,000, into the culture fluid. Only the high-molecular-weight amylase (hmwA) was also identified as cell associated. Extraction and reassociation experiments showed that the hmwA had a high-level affinity to the peptidoglycan-containing layer and to the S-layer surface, but the interactions with the peptidoglycan-containing layer were stronger than those with the S-layer surface. For the S-layer-deficient variant, no changes in the amount of cell-associated and free hmwA could be observed during growth on starch medium, while for the S-layer-carrying strain, cell association of the hmwA strongly depended on the growth phase of the cells. The maximum amount of cell-associated hmwA was observed 3 h after inoculation, which corresponded to early exponential growth. The steady decrease in cell-associated hmwA during continued growth correlated with the appearance and the increasing intensity of a protein with an apparent molecular weight of 60,000 on sodium dodecyl sulfate gels. This protein had a high-level affinity to the peptidoglycan-containing layer and was identified as an N-terminal S-layer protein fragment which did not result from proteolytic cleavage of the whole S-layer protein but seems to be a truncated copy of the S-layer protein which is coexpressed with the hmwA under certain culture conditions. During growth on starch medium, the N-terminal S-layer protein fragment was integrated into the S-layer lattice, which led to the loss of its regular structure over a wide range and to the loss of amylase binding sites. Results obtained in the present study provide evidence that the N-terminal part of the S-layer protein is responsible for the anchoring of the subunits to the peptidoglycan-containing layer, while the surface-located C-terminal half could function as a binding site for the hmwA.  相似文献   

17.
Growth and polymer synthesis were studied in a recombinant E. coli strain carrying phaBAC and phaP of Azotobacter sp. strain FA8 using different carbon sources and oxygen availability conditions. The results obtained with glucose or glycerol were completely different, demonstrating that the metabolic routes leading to the synthesis of the polymer when using glycerol do not respond to environmental conditions such as oxygen availability in the same way as they do when other substrates, such as glucose, are used. When cells were grown in a bioreactor using glucose the amount of polymer accumulated at low aeration was reduced by half when compared to high aeration, while glycerol cultures produced at low aeration almost twice the amount of polymer synthesized at the higher aeration condition. The synthesis of other metabolic products, such as ethanol, lactate, formate and acetate, were also affected by both the carbon source used and aeration conditions. In glucose cultures, lactate and formate production increased in low agitation compared to high agitation, while poly(3-hydroxybutyrate) synthesis decreased. In glycerol cultures, the amount of acids produced also increased when agitation was lowered, but carbon flow was mostly redirected towards ethanol and poly(3-hydroxybutyrate). These results indicated that carbon partitioning differed depending on both carbon source and oxygen availability, and that aeration conditions had different effects on the synthesis of the polymer and other metabolic products when glucose or glycerol were used.  相似文献   

18.
Sll1951 is the surface layer (S-layer) protein of the cyanobacterium Synechocystis sp. strain PCC 6803. This large, hemolysin-like protein was found in the supernatant of a strain that was deficient in S-layer attachment. An sll1951 deletion mutation was introduced into Synechocystis and was easily segregated to homozygosity under laboratory conditions. By thin-section and negative-stain transmission electron microscopy, a ∼30-nm-wide S-layer lattice covering the cell surface was readily visible in wild-type cells but was absent in the Δsll1951 strain. Instead, the Δsll1951 strain displayed a smooth lipopolysaccharide surface as its most peripheral layer. In the presence of chaotropic agents, the wild type released a large (>150-kDa) protein into the medium that was identified as Sll1951 by mass spectrometry of trypsin fragments; this protein was missing in the Δsll1951 strain. In addition, Sll1951 was prominent in crude extracts of the wild type, indicating that it is an abundant protein. The carotenoid composition of the cell wall fraction of the Δsll1951 strain was similar to that of the wild type, suggesting that the S-layer does not contribute to carotenoid binding. Although the photoautotrophic growth rate of the Δsll1951 strain was similar to that of the wild-type strain, the viability of the Δsll1951 strain was reduced upon exposure to lysozyme treatment and hypo-osmotic stress, indicating a contribution of the S-layer to the integrity of the Synechocystis cell wall. This work identifies the S-layer protein in Synechocystis and shows that, at least under laboratory conditions, this very abundant, large protein has a supportive but not a critical role in the function of the cyanobacterium.  相似文献   

19.
苏云金芽胞杆菌CTC菌株的S-层蛋白可以形成伴胞晶体   总被引:2,自引:1,他引:1  
苏云金芽胞杆菌(Bacillus thuringiensis)CTC菌株产生卵圆形伴胞晶体,晶体蛋白分子量为100kD;透射电子显微镜观察结果表明该菌株有S—层结构,而且在母细胞内可以形成伴胞晶体和S—层的初体结构;其蛋白基因导入苏云金芽胞杆菌无晶体突变株BMB171后,扫描电子显微镜观察结果表明转化子能形成晶体,而其形状与CTC菌株的相同;转化子晶体蛋白的分子量大小也与CTC菌株的相同,为100kD。以上实验结果结合以前晶体蛋白N—末端测序和基因核苦酸序列,表明苏云金芽胞杆菌CTC菌株的S—层蛋白可以形成伴胞晶体。  相似文献   

20.
First studies on the structure-function relationship of the S-layer protein from B. stearothermophilus PV72/p2 revealed the coexistence of two binding domains on its N-terminal part, one for peptidoglycan and another for a secondary cell wall polymer (SCWP). The peptidoglycan binding domain is located between amino acids 1 to 138 of the mature S-layer protein comprising a typical S-layer homologous domain. The SCWP binding domain lies between amino acids 240 to 331 and possesses a high serine plus glycine content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号