首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J E Merrill  Y Koyanagi    I S Chen 《Journal of virology》1989,63(10):4404-4408
Cytokines such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF alpha) are important in normal immune processes. In this study, we demonstrate that human immunodeficiency virus type 1 (HIV-1) virions induce normal peripheral blood mononuclear phagocytes to produce both IL-1 and TNF within a few hours after their exposure to virus. The induction of these cytokines by HIV-1 does not require a productive infection. Blocking studies with soluble CD4 indicate that the effect is mediated through the CD4 molecule. In addition, the treatment of mononuclear phagocytes with OKT4A monoclonal antibody mimics the effects of HIV-1. Thus, these results indicate that induction of IL-1 and TNF alpha can occur via signals mediated through the CD4 molecule on mononuclear phagocytes. TNF has been shown by other investigators to induce HIV-1 expression. Therefore, TNF alpha may play a role in autocrine and paracrine regulation of HIV-1 expression. In addition, the induction of IL-1 and TNF by HIV-1 may also contribute to some of the neurologic and physiologic disorders associated with acquired immunodeficiency syndrome.  相似文献   

2.
Astrocytes and microglia, two glial cell populations of the CNS, have been described to be involved in many immune processes. We used defined combinations of cytokines, interferon gamma (IFN-gamma)/interleukin-1 alpha (IL-1 alpha) and IFN-gamma/tumor necrosis factor alpha (TNF alpha), to simulate different in vitro immune environments observed in disease or inflammation. In these conditions, we analyzed and compared the regulating effects of these cytokines on cell surface and total expression of MHC II and on the capacity of murine astrocytes and microglia to present peptide and native antigens to specific primed T cells. Neither IL-1 alpha nor TNF alpha affected the IFN-gamma-induced antigen presentation capacity of microglia. Astrocytes, however, were severely impaired in their capacity to present native antigens and, to a minor extent, a peptide antigen. Total expression of MHC II was not affected by these cytokines in microglia, whereas in astrocytes it was reduced by IL-1 alpha and increased by TNF alpha. Both cytokines downregulated MHC II expression at the surface of astrocytes, but not of microglia. This shows that TNF alpha affects the of IFN-gamma-immunocompetent astrocytes to process and present antigen, probably either by altering membrane traffic of MHC II and of antigen and/or enzymatic activities associated with these mechanisms, while IL-1 alpha does so by downregulating MHC II expression. Altogether, our results illustrate how differently astrocytes and microglia react toward a defined, similar immune environment. One type of cell, the astrocytes, downregulate their T-cell stimulation and MHC II trafficking, and probably also their antigen processing, functions while the other, the microglia, maintain their antigen presentation potential.  相似文献   

3.
Li Y  Fu L  Gonzales DM  Lavi E 《Journal of virology》2004,78(7):3398-3406
The molecular and cellular basis of coronavirus neurovirulence is poorly understood. Since neurovirulence may be determined at the early stages of infection of the central nervous system (CNS), we hypothesize that it may depend on the ability of the virus to induce proinflammatory signals from brain cells for the recruitment of blood-derived inflammatory cells. To test this hypothesis, we studied the interaction between coronaviruses (mouse hepatitis virus) of different neurovirulences with primary cell cultures of brain immune cells (astrocytes and microglia) and mouse tissues. We found that the level of neurovirulence of the virus correlates with its differential ability to induce proinflammatory cytokines (interleukin 12 [IL-12] p40, tumor necrosis factor alpha, IL-6, IL-15, and IL-1beta) in astrocytes and microglia and in mouse brains and spinal cords. These findings suggest that coronavirus neurovirulence may depend on a novel discriminatory ability of astrocytes and microglia to induce a proinflammatory response in the CNS.  相似文献   

4.
The production of interleukin-1 beta (IL-1 beta), IL-6, and tumor necrosis factor alpha (TNF-alpha) by fresh peripheral blood mononuclear cells was evaluated after exposure to human immunodeficiency virus (HIV) or purified recombinant HIV-1 envelope glycoprotein (rgp120). To exclude the role of contaminating endotoxin in this study, all media were subjected to ultrafiltration and reagents contained less than 25 pg of endotoxin per ml by Limulus assay. Under endotoxin-free conditions, no increases in IL-1 beta, IL-6, or TNF-alpha mRNA or protein were detectable in cell cultures exposed to HIV-1, HIV-2, or rgp120 (0.1 to 10 micrograms/ml), as compared with cytokine levels in mock-exposed cultures. However, concentrations of endotoxin (lipopolysaccharide) as low as 0.5 ng/ml induced significant production of mRNA and protein for these three cytokines. Preincubation of mononuclear cells with "shake" HIV-1 preparations and also mock-infected shake preparations prior to lipopolysaccharide stimulation resulted in a two- to threefold increase in IL-1 beta and TNF-alpha production. This priming effect was not observed with rgp120 (0.1 to 10 micrograms/ml) or standard HIV-1 or mock-infected supernatants, suggesting the presence of biologically active material independent of virus in the shake preparations. Our studies indicate that, in the absence of endotoxin, HIV-1, HIV-2, and HIV gp120 do not induce production of IL-1 beta, IL-6, or TNF-alpha by peripheral blood mononuclear cells.  相似文献   

5.
Astrocytes form an integral part of the blood brain barrier and are the first cell type in the central nervous system to encounter insult if there is an ischemic attack. The immunologic reaction of astrocytes to an ischemic insult would be affective to the subsequent responses of other nerve cells. We previously showed that ischemia caused an increase in the levels of interleukin 1alpha (IL-1alpha), tumor necrosis factor alpha (TNF alpha), and interleukin 6 (IL-6) in the culture medium of mouse cerebral cortical astrocyte. We did not have evidence on the source of these cytokines. This study aimed to investigate the expressions of these cytokine mRNAs in the astrocytes under ischemia. Results demonstrated that ischemia could induce necrosis and apoptosis in astrocytes. By using the RT-PCR method, we demonstrated for the first time that the mRNA levels of IL-1alpha, TNF alpha and IL-6 in normal astrocyte was very low, but their expressions could be induced quickly under ischemia. These cytokines might be interactive as indicated by the difference in time course of their expressions, with IL-1alpha being the earliest and IL-6 being the latest. The result provided some understanding of the induction and progression of these immunologic responses in astrocytes under ischemia. It also supported our previous findings that astrocytes contributed to the cytokines released under ischemia.  相似文献   

6.
A finding commonly observed in human immunodeficiency virus type 1 (HIV-1)-infected patients is invasion of the brain by activated T cells and infected macrophages, eventually leading to the development of neurological disorders and HIV-1-associated dementia. The recruitment of T cells and macrophages into the brain is likely the result of chemokine expression. Indeed, earlier studies revealed that levels of different chemokines were increased in the cerebrospinal fluid of HIV-1-infected patients whereas possible triggers and cellular sources for chemokine expression in the brain remain widely undefined. As previous studies indicated that HIV-1 Tat, the retroviral transactivator, is capable of inducing a variety of cellular genes, we investigated its capacity to induce production of chemokines in astrocytes. Herein, we demonstrate that HIV-1 Tat(72aa) is a potent inducer of MCP-1, interleukin-8 (IL-8), and IP-10 expression in astrocytes. Levels of induced IP-10 protein were sufficiently high to induce chemotaxis of peripheral blood lymphocytes. In addition, Tat(72aa) induced IL-8 expression in astrocytes. IL-8 mRNA induction was seen less then 1 h after Tat(72aa) stimulation, and levels remained elevated for up to 24 h, leading to IL-8 protein production. Tat(72aa)-mediated MCP-1 and IL-8 mRNA induction was susceptible to inhibition by the MEK1/2 inhibitor UO126 but was only modestly decreased by the inclusion of the p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190. In contrast, Tat-mediated IP-10 mRNA induction was suppressed by SB202190 but not by the MEK1/2 inhibitor UO126. These findings indicate that MAPKs play a major role in Tat(72aa)-mediated chemokine induction in astrocytes.  相似文献   

7.
Bautista AP  Wang E 《Life sciences》2002,71(4):371-382
Glycoprotein 120 from HIV-1, HIV-2 and SIV is known to stimulate secretion of chemokines by mononuclear cells. Thus, this work tests the hypothesis that acute ethanol intoxication suppresses HIV-1 gp120-induced chemokine production by murine Kupffer cells and splenocytes. Male Balb/c mice were given ethanol (1.70 g/Kg) by intragastric gavage in 0.1 ml volume of saline. Five minutes after ethanol administration, mice received an intravenous injection of HIV-1 gp120 (5 microg/Kg). After 24 hr, serum samples, splenocytes and Kupffer cells were obtained. Isolated cells were cultured in DMEM for 24 hr to determine production of chemokines and cytokines in vitro. Chemokines (MIP-2, KC, RANTES, MIP-1 alpha and MCP-1) and cytokines (IL-1 beta, TNF alpha, IL-10, gamma-IFN) were measured by ELISA. M-RNA abundance of these mediators was determined by RT-PCR. Results show that HIV-1 gp120 treatment was associated with significant elevations in serum KC and RANTES. No changes were observed with regard to other chemokines and cytokines. Oral administration of ethanol significantly suppressed HIV-1gp120-induced KC and RANTES release. KC and RANTES-mRNA expression and protein release by splenocytes and Kupffer cells were up-regulated by HIV-1 gp120. Such up-regulation was attenuated by ethanol treatment. These data show that acute ethanol administration attenuates HIV-1 gp120-induced chemokine release in vivo by isolated splenocytes and Kupffer cells. Through this mechanism, previous in vivo ethanol use may compromise the ability of HIV-1 gp120 to induce chemokine-mediated inhibition of HIV-1 entry into target cells.  相似文献   

8.
Brain macrophages/microglia and astrocytes are known to be involved in the pathogenesis of HIV-1-associated dementia (HAD). To clarify their interaction and contribution to the pathogenesis, HIV-1-infected or uninfected macrophages were used as a model of brain macrophages/microglia, and their effects on human astrocytes in vitro were examined. The culture supernatants of HIV-1-infected or uninfected macrophages induced significant astrocyte proliferation, which was annihilated with a neutralizing antibody to stromal cell-derived factor (SDF)-1alpha or a matrix metalloproteinase (MMP) inhibitor. In these astrocytes, CXCR4, MMP, and tissue inhibitors of matrix metalloproteinase mRNA expression and SDF-1alpha production were significantly up-regulated. The supernatants of infected macrophages were always more effective than those of uninfected cells. Moreover, the enhanced production of SDF-1alpha was suppressed by the MMP inhibitor. These results indicate that the activated and HIV-1-infected macrophages can indirectly induce astrocyte proliferation through up-regulating SDF-1alpha and MMP production, which implies a mechanism of astrogliosis in HAD.  相似文献   

9.
HIV-1, macrophages, glial cells, and cytokines in AIDS nervous system disease   总被引:25,自引:0,他引:25  
J E Merrill  I S Chen 《FASEB journal》1991,5(10):2391-2397
Hallmarks of central nervous system (CNS) disease in AIDS patients are headaches, fever, subtle cognitive changes, abnormal reflexes, and ataxia. Dementia and severe sensory and motor dysfunction characterize more severe disease. Autoimmune-like peripheral neuropathies, cerebrovascular disease, and brain tumors are also observed. Histological changes include inflammation, astrocytosis, microglial nodule formation, and diffuse de- or dysmyelination. Focal demyelination can also be seen. It is clear that AIDS-associated neurological diseases are correlated with greater levels of HIV-1 antigen or genome in tissues. In AIDS dementia, macrophages and microglial cells of the CNS are the predominant cell types infected and producing HIV-1. However, manifestations of the disease make it unlikely that direct infection by HIV-1 is responsible. It seems more likely that the effects are mediated through secretion of viral proteins or viral induction of cytokines that bind to glial cells and neurons. HIV-1 induction of such cytokines as interleukin 1 (IL 1) and tumor necrosis factor-alpha (TNF alpha) may lead to an autocrine feedback loop involving further productive virus replication and induction of other cytokines such as interleukin 6 (IL 6) and granulocyte-macrophage colony-stimulating factor (GMCSF). Interleukin 1 and TNF alpha in combination with IL 6 and GMCSF could account for many clinical and histopathological findings in AIDS nervous system diseases. As HIV-1 infected patients produce elevated levels of IL 1, TNF alpha, and IL 6, it will be important to make a formal connection between the presence of these factors in the CNS, which are all products of activated macrophages, astroglia, and microglia, their in vivo induction directly by virus or indirectly by virus-induced intermediates, and the clinical and pathological conditions seen in the nervous system in this disease.  相似文献   

10.
HIV-1 envelope protein gp120 has been extensively studied for neurotoxic effects that have been attributed to the increased expression of various proinflammatory cytokines in the CNS. Recently we have shown that methamphetamine (MA) also increases expression of proinflammatory cytokines in astrocytes. However, combined effect of gp120 and MA is not known. The present study was undertaken to determine cumulative effect and the mechanism(s)/pathways involved in the functional interaction between gp120 and MA in SVGA astrocytes. Our results clearly suggest that gp120 and MA affect IL-6 but not IL-8 in a synergistic manner and this synergy was mediated by PI3K/Akt and NF-κB pathways. Inhibition of either of these pathways could abrogate the increased expression of IL-6 due to MA or gp120 alone, as well as the increased expression of IL-6 when the astrocytes were treated with both gp120 and MA. These results were confirmed by both, using chemical inhibitors/siRNA as well as western blotting. This study therefore provides novel information regarding the interaction between MA and gp120 in terms of the expression of IL-6 and the mechanisms underlying potential synergy between MA and gp120 in astrocytes.  相似文献   

11.
Novel viral vectors that are able to induce both strong and long-lasting immune responses may be required as effective vaccines for human immunodeficiency virus type 1 (HIV-1) infection. Our previous experiments with a replication-competent vaccine strain-based rabies virus (RV) expressing HIV-1 envelope protein from a laboratory-adapted HIV-1 strain (NL4-3) and a primary HIV-1 isolate (89.6) showed that RV-based vectors are excellent for B-cell priming. Here we report that cytotoxic T-lymphocyte (CTL) responses against HIV-1 gp160 are induced by recombinant RVs. Our results indicated that a single inoculation of mice with an RV expressing HIV-1 gp160 induced a solid and long-lasting memory CTL response specific for HIV-1 envelope protein. Moreover, CTLs from immunized mice were not restricted to the homologous HIV-1 envelope protein and were able to cross-kill target cells expressing HIV-1 gp160 from heterologous HIV-1 strains. These studies further suggest promise for RV-based vectors to elicit a persistent immune response against HIV-1 and their potential utility as efficacious anti-HIV-1 vaccines.  相似文献   

12.
Approximately one-quarter of individuals with AIDS develop neuropathological symptoms that are attributable to infection of the brain with HIV. The cognitive manifestations have been termed HIV-associated dementia. The mechanisms underlying HIV-associated neuronal injury are incompletely understood, but various studies have confirmed the release of neurotoxins by macrophages/microglia infected with HIV-1 or stimulated by viral proteins, including the envelope glycoprotein gp120. In the present study, we investigated the possibility that l -cysteine, a neurotoxin acting at the N-methyl-d -aspartate subtype of glutamate receptor, could contribute to HIV-associated neuronal injury. Picomolar concentrations of gp120 were found to stimulate cysteine release from human monocyte-derived macrophages (hMDM) in amounts sufficient to injure cultured rat cerebrocortical neurons. TNF-alpha and IL-1beta, known to be increased in HIV-encephalitic brains, as well as a cellular product of cytokine stimulation, ceramide, were also shown to induce release of cysteine from hMDM in a dose-dependent manner. A TNF-alpha-neutralizing Ab and an IL-1betaR antagonist partially blocked gp120-induced cysteine release, suggesting that these cytokines may mediate the actions of gp120. Interestingly, hMDM infected with HIV-1 produced significantly less cysteine than uninfected cells following stimulation with TNF-alpha. Our findings imply that cysteine may play a role in the pathogenesis of neuronal injury in HIV-associated dementia due to its release from immune-activated macrophages but not virus-infected macrophages. Such uninfected cells comprise the vast majority of mononuclear phagocytes (macrophages and microglia) found in HIV-encephalitic brains.  相似文献   

13.
Liu Y  Liu H  Kim BO  Gattone VH  Li J  Nath A  Blum J  He JJ 《Journal of virology》2004,78(8):4120-4133
Human immunodeficiency virus type 1 (HIV-1) infection occurs in the central nervous system and causes a variety of neurobehavioral and neuropathological disorders. Both microglia, the residential macrophages in the brain, and astrocytes are susceptible to HIV-1 infection. Unlike microglia that express and utilize CD4 and chemokine coreceptors CCR5 and CCR3 for HIV-1 infection, astrocytes fail to express CD4. Astrocytes express several chemokine coreceptors; however, the involvement of these receptors in astrocyte HIV-1 infection appears to be insignificant. In the present study using an expression cloning strategy, the cDNA for the human mannose receptor (hMR) was found to be essential for CD4-independent HIV-1 infectivity. Ectopic expression of functional hMR rendered U87.MG astrocytic cells susceptible to HIV-1 infection, whereas anti-hMR serum and hMR-specific siRNA blocked HIV-1 infection in human primary astrocytes. In agreement with these findings, hMR bound to HIV-1 virions via the abundant and highly mannosylated sugar moieties of HIV-1 envelope glycoprotein gp120 in a Ca(2+)-dependent fashion. Moreover, hMR-mediated HIV-1 infection was dependent upon endocytic trafficking as assessed by transmission electron microscopy, as well as inhibition of viral entry by endosomo- and lysosomotropic drugs. Taken together, these results demonstrate the direct involvement of hMR in HIV-1 infection of astrocytes and suggest that HIV-1 interaction with hMR plays an important role in HIV-1 neuropathogenesis.  相似文献   

14.
BACKGROUND: Cytokines and cytokine antagonists modulate human immunodeficiency virus (HIV) replication in vitro and may be involved in HIV disease pathogenesis. An understanding of these cytokine networks may suggest novel treatment strategies for HIV-seropositive persons. MATERIALS AND METHODS: U1 cells, a chronically infected promonocytic cell line, were stimulated with interleukin 1 alpha (IL-1 alpha), IL-1 beta or tumor necrosis factor (TNF) for 24 hr. The effects of these cytokines, and of anti-IL-1 receptor type 1 and type 2 (IL-1RI and II) antibody, IL-1 receptor antagonist (IL-1Ra), and recombinant human TNF binding protein type 1 (rhTBP-1, a form of TNF receptor p55), on HIV-1 replication, as measured by ELISA for HIV-1 p24 antigen, were determined. The effects of IL-1 and IL-1Ra on nuclear factor-kappa B (NF-kappa B) DNA binding activity, as measured by electrophoretic mobility shift assays, were also determined. RESULTS: IL-1 alpha and IL-1 beta increased p24 antigen production in a concentration-dependent manner. IL-1Ra completely, and rhTBP-1 partially, suppressed IL-1-induced p24 antigen production. IL-1 increased NF-kappa B DNA binding activity and IL-1Ra blocked this effect. Since IL-1Ra blocks IL-1 from binding to both the IL-1RI and Il-1RII, monoclonal antibodies directed against each receptor were used to ascertain which IL-1R mediates IL-1-induced HIV-1 expression. Antibody to the IL-1RI reduced IL-1-induced p24 antigen production. Although anti-IL-1RII antibody blocked the binding of 125IL-1-1 alpha to U1 cells by 99%, this antibody did not affect IL-1-induced p24 antigen production. IL-1 beta enhanced TNF alpha-induced HIV expression when added before or simultaneously with TNF alpha. CONCLUSIONS: IL-1 induces HIV-1 expression (via the IL-1RI) and NF-kappa B activity in U1 cells. These effects are blocked by IL-1Ra and partially mediated by TNF. IL-1 enhances TNF alpha-induced HIV replication in U1 cells.  相似文献   

15.
The effect of recombinant human granulocyte-macrophage colony stimulating factor (GM-CSF) on the expression of HLA-DR, and the production of the cytokines interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF alpha) by human peripheral blood monocyte-enriched populations was investigated. GM-CSF was shown to induce both the expression of HLA-DR and the cytokines IL-1 and TNF alpha in a dose-dependent manner. In contrast, interferon-gamma (IFN-gamma), which induced major histocompatibility complex (MHC) class II expression, did not induce IL-1 or TNF alpha production. However, IFN-gamma enhanced the cell surface expression of HLA-DR and the production of IL-1 and TNF alpha on monocyte-enriched cells stimulated by GM-CSF. By itself, GM-CSF did not induce surface class II expression on the human monocytic tumour cell line THP-1, whereas it synergized with IFN-gamma to induce surface expression. These cells responded to GM-CSF by producing IL-1 and TNF alpha; Northern blotting showed that mRNA levels of IL-1 and TNF alpha were transiently induced, similar to other cytokines. Our results indicate that GM-CSF is a major macrophage activating factor that is capable of inducing both the expression of HLA-DR and the cytokines involved in T-cell activation by macrophages; therefore, GM-CSF may be of importance in potentiating antigen presenting function.  相似文献   

16.
The chimeric murine oncornavirus FrCas(E) causes a rapidly progressive paralytic disease associated with spongiform neurodegeneration throughout the neuroaxis. Neurovirulence is determined by the sequence of the viral envelope gene and by the capacity of the virus to infect microglia. The neurocytopathic effect of this virus appears to be indirect, since the cells which degenerate are not infected. In the present study we have examined the possible role of inflammatory responses in this disease and have used as a control the virus F43. F43 is an highly neuroinvasive but avirulent virus which differs from FrCas(E) only in 3' pol and env sequences. Like FrCas(E), F43 infects large numbers of microglial cells, but it does not induce spongiform neurodegeneration. RNAase protection assays were used to detect differential expression of genes encoding a variety of cytokines, chemokines, and inflammatory cell-specific markers. Tumor necrosis factor alpha (TNF-alpha) and TNF-beta mRNAs were upregulated in advanced stages of disease but not early, even in regions with prominent spongiosis. Surprisingly there was no evidence for upregulation of the cytokines interleukin-1 alpha (IL-1 alpha), IL-1 beta, and IL-6 or of the microglial marker F4/80 at any stage of this disease. In contrast, increased levels of the beta-chemokines MIP-1 alpha and -beta were seen early in the disease and were concentrated in regions of the brain rich in spongiosis, and the magnitude of responses was similar to that observed in the brains of mice injected with the glutamatergic neurotoxin ibotenic acid. MIP-1alpha and MIP-1beta mRNAs were also upregulated in F43-inoculated mice, but the responses were three- to fivefold lower and occurred later in the course of infection than was observed in FrCas(E)-inoculated mice. These results suggest that the robust increase in expression of MIP-1 alpha and MIP-1 beta in the brain represents a correlate of neurovirulence in this disease, whereas the TNF responses are likely secondary events.  相似文献   

17.
A recombinant adenovirus was constructed by inserting the human immunodeficiency virus type 1 (HIV-1) envelope gene downstream from the early region 3 (E3) promoter of adenovirus type 5 (Ad5), replacing the coding sequences of E3. The recombinant virus replicated as efficiently as the parent virus in all cell lines tested. Human cells infected with the recombinant virus synthesized the HIV-1 envelope precursor gp160, which was efficiently processed to the envelope glycoproteins gp120 and gp41. A human T-lymphoblast line (Molt-4) infected with the recombinant virus expressed HIV-1 envelope glycoproteins on the cell surface, leading to syncytium formation. The envelope gene was expressed from the E3 promoter at early times after infection and at late times from the major late promoter. When cotton rats were infected with the recombinant virus, antibodies against the HIV-1 envelope glycoproteins could be expressed in an immunoreactive form by the recombinant adenovirus, further illustrating the usefulness of adenoviruses as expression vectors.  相似文献   

18.
Blood-borne human immunodeficiency virus type 1 (HIV-1) crosses the blood-brain barrier (BBB) to induce brain dysfunction. How HIV-1 crosses the BBB is unclear. Most work has focused on the ability of infected immune cells to cross the BBB, with less attention devoted to the study of free virus. Since the HIV-1 coat glycoprotein gp120 can cross the BBB, we postulated that gp120 might be key in determining whether free virus can cross the BBB. We used radioactive virions which do (Env+) or do not (Env-) bear the envelope proteins to characterize the ability of HIV-1 to be taken up by the murine BBB. In vivo and in vitro studies showed that the envelope proteins are key to the uptake of free virus and that uptake was enhanced by wheat germ agglutinin, strongly suggesting that the envelope proteins induce viral adsorptive endocytosis and transcytosis in brain endothelia. Capillary depletion showed that Env+ virus completely crossed the vascular BBB to enter the parenchyma of the brain. Virus also entered the cerebrospinal fluid, suggesting passage across the choroid plexus as well. About 0.22% of the intravenously injected dose was taken up per g of brain. In vitro studies showed that postinternalization membrane cohesion (membrane binding not reversed with acid wash or cell lysis) was a regulated event. Intact virus was recovered from the brain endothelial cytosol and was effluxed from the endothelial cells. These results show that free HIV-1 can cross the BBB by an event related to adsorptive endocytosis and mediated by the envelope proteins.  相似文献   

19.
Inflammation and iron accumulation are present in a variety of neurodegenerative diseases that include Alzheimer's disease and Parkinson's disease. The study of the putative association between inflammation and iron accumulation in central nervous system cells is relevant to understand the contribution of these processes to the progression of neuronal death. In this study, we analyzed the effects of the inflammatory cytokines tumor necrosis factor alpha (TNF‐α) and interleukin 6 (IL‐6) and of lipopolysaccharide on total cell iron content and on the expression and abundance of the iron transporters divalent metal transporter 1 (DMT1) and Ferroportin 1 (FPN1) in neurons, astrocytes and microglia obtained from rat brain. Considering previous reports indicating that inflammatory stimuli induce the systemic synthesis of the master iron regulator hepcidin, we identified brain cells that produce hepcidin in response to inflammatory stimuli, as well as hepcidin‐target cells. We found that inflammatory stimuli increased the expression of DMT1 in neurons, astrocytes, and microglia. Inflammatory stimuli also induced the expression of hepcidin in astrocytes and microglia, but not in neurons. Incubation with hepcidin decreased the expression of FPN1 in the three cell types. The net result of these changes was increased iron accumulation in neurons and microglia but not in astrocytes. The data presented here establish for the first time a causal association between inflammation and iron accumulation in brain cells, probably promoted by changes in DMT1 and FPN1 expression and mediated in part by hepcidin. This connection may potentially contribute to the progression of neurodegenerative diseases by enhancing iron‐induced oxidative damage.  相似文献   

20.
To improve the safety of recombinant vaccinia virus vaccines, modified vaccinia virus Ankara (MVA) has been employed, because it has a replication defect in most mammalian cells. Here we apply MVA to human immunodeficiency virus type 1 (HIV-1) vaccine development by incorporating the envelope protein gp160 of HIV-1 primary isolate strain 89.6 (MVA 89.6) and use it to induce mucosal cytotoxic-T-lymphocyte (CTL) immunity. In initial studies to define a dominant CTL epitope for HIV-1 89.6 gp160, we mapped the epitope to a sequence, IGPGRAFYAR (from the V3 loop), homologous to that recognized by HIV MN loop-specific CTL and showed that HIV-1 MN-specific CTLs cross-reactively recognize the corresponding epitope from strain 89.6 presented by H-2Dd. Having defined the CTL specificity, we immunized BALB/c mice intrarectally with recombinant MVA 89.6. A single mucosal immunization with MVA 89.6 was able to elicit long-lasting antigen-specific mucosal (Peyer’s patch and lamina propria) and systemic (spleen) CTL responses as effective as or more effective than those of a replication-competent vaccinia virus expressing 89.6 gp160. Immunization with MVA 89.6 led to (i) the loading of antigen-presenting cells in vivo, as measured by the ex vivo active presentation of the P18-89.6 peptide to an antigen-specific CTL line, and (ii) the significant production of the proinflammatory cytokines (interleukin-6 and tumor necrosis factor alpha) in the mucosal sites. These results indicate that nonreplicating recombinant MVA may be at least as effective for mucosal immunization as replicating recombinant vaccinia virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号