首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new genus of sand‐dwelling photosynthetic dinoflagellate, Testudodinium Horiguchi, Tamura, Katsumata et A. Yamaguchi is proposed based on Testudodinium testudo (Herdman) Horiguchi, Tamura, Katsumata, et A. Yamaguchi comb. nov. (Basionym: Amphidinium testudo Herdman) and a new species in this new genus, Testudodinium maedaense Katsumata et Horiguchi sp. nov. is described. Amphidinium corrugatum is also transferred to this genus, making a new combination T. corrugatum (Larsen et Patterson) Horiguchi, Tamura et A. Yamaguchi. These three species are similar to the members of the genus Amphidinium in having an extremely small episome and a dorsoventrally flattened cell body. They are, however, distinguished from the genus Amphidinium seusu stricto by the possession of a distinct longitudinal furrow in the middle of ventral side of the episome. Phylogenetic trees based on small subunit (SSU) rDNA revealed that all three of these Testudodinium species formed a robust clade and, although statistical support is not high, the tree suggests Testudodinium clade is not closely related to Amphidinium seusu stricto clade. The morphological differences together with molecular data support the establishment of a new genus for A. testudo and its related species.  相似文献   

2.
A new marine sand‐dwelling coccoid dinoflagellate Pyramidodinium atrofuscum Horiguchi et Sukigara gen. et sp. nov. is described from Jellyfish Lake, Republic of Palau. The dinoflagellate alternates a non‐motile vegetative stage with a motile gymnodinioid stage within its life cycle. The non‐motile stage is dominant in the life cycle and the dinoflagellate reproduces itself by means of the production of two motile cells. The released motile cell swims only for a short period and is directly transformed into the non‐motile cell. The non‐motile cell is sessile, pyramidal in shape, with a single longitudinal ridge and a double transverse ridge. The surface of the cell wall is covered with many processes. The motile cell has a Gymnodinium‐like morphology, but no apical groove is present. An ultrastructural study revealed that the dinoflagellate possesses typical dinoflagellate organelles. Based on the unique morphology of the vegetative non‐motile stage, we propose a new genus Pyramidodinium for this dinoflagellate, with the type species Pyramidodinium atrofuscum Horiguchi et Sukigara, gen. et sp. nov.  相似文献   

3.
A new genus, Augophyllum Lin, Fredericq et Hommersand gen. nov. related to Nitophyllum, tribe Nitophylleae, subfam. Nitophylloideae of the Delesseriaceae, is established to contain the type species Augophyllum wysorii Lin, Fredericq et Hommersand sp. nov. from Caribbean Panama; Augophyllum kentingii Lin, Fredericq et Hommersand sp. nov. from Taiwan; Augophyllum marginifructum (R. E. Norris et Wynne) Lin, Fredericq et Hommersand comb. nov. (Myriogramme marginifructa R. E. Norris et Wynne 1987) from South Africa, Tanzania, and the Sultanate of Oman; and Augophyllum delicatum (Millar) Lin, Fredericq et Hommersand comb. nov. (Nitophyllum delicatum Millar 1990 ) from southeastern Australia. Like Nitophyllum, Augophyllum is characterized by a diffuse meristematic region, the absence of macro‐ and microscopic veins, procarps consisting of a supporting cell bearing a slightly curved four‐celled carpogonial branch flanked laterally by a cover cell and a sterile cell, a branched multicellular sterile group after fertilization, absence of cell fusions between gonimoblast cells, and tetrasporangia transformed from multinucleate surface cells. Augophyllum differs from Nitophyllum by the blades becoming polystromatic inside the margins, often with a stipitate cylindrical base, the possession of aggregated discoid plastids neither linked by fine strands nor forming bead‐like branched chains, spermatangia and procarps initiated at the margins of blades, not diffuse, and a cystocarp composed of densely branched gonimoblast filaments borne on a conspicuous persistent auxiliary cell with an enlarged nucleus. Analyses of the rbcL gene support the separation of Augophyllum from Nitophyllum. An investigation of species attributed to Nitophyllum around the world is expected to reveal other taxa referable to Augophyllum.  相似文献   

4.
A new, marine, sand‐dwelling raphidophyte from Sylt, Germany, Haramonas viridis Horiguchi et Hoppenrath sp. nov. is described. This represents a second species in the previously monotypic genus Haramonas, which was originally described from a sand sample from a mangrove river mouth in tropical Australia, based on the type species, H. dimorpha. This new species from a cold temperate region: (i) possesses a tubular invagi‐nation in the posterior part of the cell; (ii) produces copious amounts of mucilage in culture; (iii) possesses both motile and non‐motile stages in its life cycle; and (iv) has overlapping discoidal chloroplasts, all of which are diagnostic features of the genus Haramonas. Therefore, it is indisputable that this species belongs to this genus. However, the species from Sylt differs from the type species of the genus in: (i) having a larger cell size; (ii) possessing a larger number of chloroplasts; and (iii) being greenish in color. The ultrastructural study revealed that the structure of the tubular invagi‐nation was the same as that of the type species.  相似文献   

5.
Phycologists have hypothesized that the diminutive fronds produced by species in the genera Chiharaea and Yamadaia, which are composed of comparatively few genicula and intergenicula, represent morphological intermediates in the evolution of articulated corallines from crustose ancestors. We test this “intermediate frond hypothesis” by comparing rbcL sequences from the generitype species Chiharaea bodegensis and Yamadaia melobesioides to sequences from other coralline genera. We demonstrate that Chiharaea includes two other NE Pacific species, Arthrocardia silvae and Yamadaia americana. Chiharaea species are characterized morphologically by inflated intergenicula and axial conceptacles with apical or acentric pores. Although relationships among the three species are unresolved, Chiharaea bodegensis, C. americana comb. nov., and C. silvae comb. nov. are distinguished from one another by DNA sequences, morphology, habitat, and biogeography. Chiharaea occurs together with Alatocladia, Bossiella, Calliarthron, and Serraticardia macmillanii in a strongly supported clade of nearly endemic north Pacific articulated coralline genera and species that have evolved relatively recently compared to other articulated corallines. In contrast, NW Pacific Yamadaia melobesioides belongs in a clade with Corallina officinalis, the generitype species of Corallina, and therefore we reduce Yamadia to a synonym of Corallina and propose Corallina melobesioides comb. nov. We reject the ‘intermediate frond hypothesis’ and conclude that Chiharaea and Yamadaia are recently derived taxa that evolved from articulated coralline ancestors and represent a reduction in the number of genicula and intergenicula.  相似文献   

6.
A new potentially ichthyotoxic dinoflagellate genus, Takayama de Salas, Bolch, Botes et Hallegraeff gen. nov., is described with two new species isolated from Tasmanian (Australia) and South African coastal waters: T. tasmanica de Salas, Bolch et Hallegraeff, sp. nov. and T. helix, de Salas, Bolch, Botes et Hallegraeff, sp. nov. The genus and two species are characterized by LM and EM of field samples and laboratory cultures as well as large subunit rDNA sequences and HPLC pigment analyses of several cultured strains. The new Takayama species have sigmoid apical grooves and contain fucoxanthin and its derivatives as the main accessory pigments. Takayama tasmanica is similar to the previously described species Gymnodinium pulchellum Larsen, Gyrodinium acrotrochum Larsen, and G. cladochroma Larsen in its external morphology but differs from these in having two ventral pores, a large horseshoe‐shaped nucleus, and a central pyrenoid with radiating chloroplasts that pass through the nucleus. It contains gyroxanthin‐diester and a gyroxanthin‐like accessory pigment, both of which are missing in T. helix. Takayama helix has an apical groove that is nearly straight while still being clearly inflected. A ventral pore or slit is present. It has numerous peripheral, strap shaped, and spiraling chloroplasts with individual pyrenoids and a solid ellipsoidal nucleus. The genus Takayama has close affinities to the genera Karenia and Karlodinium.  相似文献   

7.
On the basis of comparative morphology and phylogenetic analyses of rbcL and LSU rDNA sequence data, a new genus, Gayliella gen. nov., is proposed to accommodate the Ceramium flaccidum complex (C. flaccidum, C. byssoideum, C. gracillimum var. byssoideum, and C. taylorii), C. fimbriatum, and a previously undescribed species from Australia. C. transversale is reinstated and recognized as a distinct species. Through this study, G. flaccida (Kützing) comb. nov., G. transversalis (Collins et Hervey) comb. nov., G. fimbriata (Setchell et N. L. Gardner) comb. nov., G. taylorii comb. nov., G. mazoyerae sp. nov., and G. womersleyi sp. nov. are based on detailed comparative morphology. The species referred to as C. flaccidum and C. dawsonii from Brazil also belong to the new genus. Comparison of Gayliella with Ceramium shows that it differs from the latter by having an alternate branching pattern; three cortical initials per periaxial cell, of which the third is directed basipetally and divides horizontally; and unicellular rhizoids produced from periaxial cells. Our phylogenetic analyses of rbcL and LSU rDNA gene sequence data confirm that Gayliella gen. nov. represents a monophyletic clade distinct from most Ceramium species including the type species, C. virgatum. We also transfer C. recticorticum to the new genus Gayliella.  相似文献   

8.
A new sand‐dwelling dinoflagellate from Palau, Galeidinium rugatum Tamura et Horiguchi gen. et sp. nov., is described. The life cycle of this new alga consists of a dominant nonmotile phase and a brief motile phase. The motile cell transforms itself directly into the nonmotile cell after swimming for a short period, and cell division takes place in the nonmotile phase. The nonmotile cell possesses a dome‐like cell covering, which is wrinkled and equipped with a transverse groove on the surface. The cell has 10–20 chloroplasts and a distinct eyespot. The motile cell is Gymnodinium‐like in shape. The dinoflagellate possesses an endosymbiotic alga to which the chloroplasts belong and which is separated from the host (dinoflagellate) cytoplasm by a unit membrane. The endosymbiont cytoplasm also possesses its own eukaryotic nucleus and mitochondria. The eyespot is surrounded by triple membranes and is located in the host cytoplasm. Photosynthetic pigment analysis, using HPLC, revealed that G. rugatum possesses fucoxanthin as the principal accessory pigment instead of peridinin. The rbcL tree showed that G. rugatum is monophyletic with Durinskia baltica (Levander) Carty et Cox and Kryptoperidinium foliaceum (Stein) Lindemann and that this clade is closely related to the pennate diatom, Cylindrotheca sp. The endosymbiont of G. rugatum is therefore shown to be a diatom. Phylogenetic analysis based on small subunit rDNA sequences demonstrated that G. rugatum, D. baltica, and K. foliaceum, all of which are known to harbor an endosymbiont of diatom origin, are closely related.  相似文献   

9.
We examined the molecular phylogeny and ultrastructure of Chlorogonium and related species to establish the natural taxonomy at the generic level. Phylogenetic analyses of 18S rRNA and RUBISCO LSU (rbcL) gene sequences revealed two separate clades of Chlorogonium from which Chlorogonium (Cg.) fusiforme Matv. was robustly separated. One clade comprised Cg. neglectum Pascher and Cg. kasakii Nozaki, whereas the other clade included the type species Cg. euchlorum (Ehrenb.) Ehrenb., Cg. elongatum (P. A. Dang.) Francé, and Cg. capillatum Nozaki, M. Watanabe et Aizawa. On the basis of unique ultrastructural characteristics, we described Gungnir Nakada gen. nov. comprising three species: G. neglectum (Pascher) Nakada comb. nov., G. mantoniae (H. Ettl) Nakada comb. nov., and G. kasakii (Nozaki) Nakada comb. nov. We also emended Chlorogonium as a monophyletic genus composed of Cg. euchlorum, Cg. elongatum, and Cg. capillatum. Because Cg. fusiforme was distinguished from the redefined Chlorogonium and Gungnir by the structure of its starch plate, which is associated with pyrenoids, we reclassified this species as Rusalka fusiformis (Matv.) Nakada gen. et comb. nov.  相似文献   

10.
Some Liagora and Izziella distributed in Taiwan display a wide range of morphological variation and can be difficult to distinguish. To clarify species concepts, we applied DNA sequence analyses and examined carposporophyte development in detail. These studies revealed two new species, which are described herein as Izziella hommersandii sp. nov. and Izziella kuroshioensis sp. nov. I. kuroshioensis superficially resembles Izziella formosana and Izziella orientalis in that its involucral filaments subtend rather than surround the lower portion of the gonimoblast mass (= Izziella type) and a fusion cell is formed from cells of the carpogonial branch, but it can be separated by differences in the cell numbers and branching pattern of the involucral filaments, as well as thallus morphology. In contrast to other species that also bear short lateral branchlets, I. hommersandii is unique in possessing a mixture of short and long involucral filaments, a phenomenon not reported before. The length of the involucral filaments is species specific among species of Izziella and contrasts to the behavior of the involucral filaments after fertilization in species such as “Liagorasetchellii [= Titanophycus setchellii comb. nov.], in which the filaments completely envelop the gonimoblast. In addition, the cells of the carpogonial branch in Titanophycus do not fuse after fertilization to form a fusion cell. Thus, a combination of characters with respect to the behavior of the carpogonial branch and the involucral filaments after fertilization is very useful for delineating species boundaries in Izziella and for separating Titanophycus from Izziella and Liagora.  相似文献   

11.
A chlorarachniophycean alga, Lotharella amoebiformis, which has been classified in the genus Lotharella is placed into a new genus Amorphochlora gen. nov., based on its phylogenetic position, which has been clarified by the recently accumulated molecular phylogenetic information, and the morphological difference between the vegetative cells of the Lotharella species. Following this taxonomic treatment, a new combination Amorphochlora amoebiformis comb. nov., is proposed.  相似文献   

12.
Type material of Navicula kotschyi was studied, and this species was transferred to Dorofeyukea gen. nov. as D. kotschyi comb. nov. Dorofeyukea was described on the basis of DNA sequence and morphological data. Additional species assigned to this genus that were previously included in Navicula include: D. ancisa comb. nov., D. grimmei comb. nov., D. ivatoensis comb. nov., D. orangiana comb. nov., D. rostellata comb. nov. & stat. nov., D. savannahiana comb. nov., D. tenuipunctata comb. nov., and D. texana comb. nov. All Dorofeyukea species share the same morphological features, including having a narrow stauroid fascia surrounded by 1–3 irregularly shortened striae, uniseriate, and weakly radiate striae, circular, or rectangular puncta in the striae that are covered internally by dome‐shaped hymenes, presence of a pseudoseptum at each apex and absence of septa. Partial DNA sequences of SSU and rbcL loci show Dorofeuykae belongs to the clade of stauroneioid diatoms together with Stauroneis, Prestauroneis, Craticula, Karayevia, Madinithidium, Fistulifera, Parlibellus, and, possibly, Schizostauron. A new species from the monoraphid genus Madinithidium, M. vietnamica sp. nov., was described based on valve and chloroplast morphology as well as DNA sequence data.  相似文献   

13.
A recent diatom, Aulacoseira nipponica (Skvortzow) Tuji comb. et stat. nov., is described from Lake Biwa, Japan, where they had been identified previously as Aulacoseira solida (Eulenstein) Krammer. These forms are compared with populations of A. solida from North America. The Japanese species differs from the North American specimens in characteristics related to the density of striae and form of the rimoportulae.  相似文献   

14.
The morphology and infraciliature of the marine hypotrichous ciliate Nothoholosticha fasciola (Kahl, 1932) nov. gen., nov. comb., isolated from mariculture waters near Qingdao, China, are redescribed based on live and protargol-impregnated specimens. Features reported for the first time include the possession of more than 50 macronuclear nodules and details of the infraciliature, i.e. 50–60 adoral membranelles, shortened paroral and endoral membranes, six frontal, one buccal and two to seven transverse cirri, ca. 40 pairs of midventral cirri, ca. 60–120 left and 70–120 right marginal cirri, three dorsal kineties, caudal and frontoterminal cirri absent. In addition, brief details of two stages of cellular reorganization in N. fasciola are supplied and comparisons with some related urostylids based on SS rRNA gene sequence data are reported. The new genus Nothoholosticha is established based primarily on the absence of frontoterminal cirri, which distinctly separates it from similar urostylid genera. Anteholosticha longissima is transferred to Nothoholosticha as N. longissima (Dragesco and Dragesco-Kernéis, 1986) nov. comb. and Holosticha antarctica is transferred to Pseudokeronopsis as P. antarctica (Wilbert and Song, 2008) nov. comb.  相似文献   

15.
Few species in the genus Grateloupia have been investigated in detail with respect to the development of the auxiliary cell ampullae before or after diploidization. In this study, we document the vegetative and reproductive structures of two new species of Grateloupia, G. taiwanensis S.‐M. Lin et H.‐Y. Liang sp. nov. and G. orientalis S.‐M. Lin et H.‐Y. Liang sp. nov., plus a third species, G. ramosissima Okamura, from Taiwan. Two distinct patterns are reported for the development of the auxiliary cell ampullae: (1) ampullae consisting of three orders of unbranched filaments that branch after diploidization of the auxiliary cell and form a pericarp together with the surrounding secondary medullary filaments (G. taiwanensis type), and (2) ampullae composed of only two orders of unbranched filaments in which only a few cells are incorporated into a basal fusion cell after diploization of the auxiliary cell and the pericarp consists almost entirely of secondary medullary filaments (G. orientalis type). G. orientalis is positioned in a large clade based on rbcL gene sequence analysis that includes the type species of Grateloupia C. Agardh 1822 , Gfilicina. G. taiwanensis clusters with a clade that includes the generitype of Phyllymenia J. Agardh 1848 , Ph. belangeri from South Africa; that of Prionitis J. Agardh 1851 , Prlanceolata from Pacific North America; and that of Pachymeniopsis Y. Yamada ex Kawab. 1954, Palanceolata from Japan. A reexamination of the type species of the genera Grateloupia, Phyllymenia, Prionitis, and Pachymeniopsis is required to clarify the generic and interspecific relationships among the species presently placed in Grateloupia.  相似文献   

16.
17.
18.
Cyrtophorids are a specialized group of ciliated protozoa with multitudinous morphotypes. In the present work, the morphology and infraciliature of two new and three rarely known species, including two new genera of cyrtophorid ciliates, Heterohartmannula fangi gen. et sp. nov. , Aporthotrochilia pulex (Deroux, 1976) gen. et comb. nov. , Trochilia alveolata sp. nov. , Trochochilodon flavus Deroux, 1976, and Hypocoma acinetarum Collin, 1907, are described. Heterohartmannula gen. nov. is mainly characterized by a combination of features: two circumoral kineties obliquely arranged, podite not surrounded by somatic kineties, and no distinct gap between left and right ciliary field. Aporthotrochilia gen. nov. is diagnosed mainly by: podite present, oral ciliature reduced to two fragments, several kinety fragments positioned on the right posterior of frontoventral kineties and several terminal fragments. Phylogenetic analyses based on the small subunit rRNA (SSU rRNA) gene sequences support the establishment of two new genera and indicate that Heterohartmannula is most closely related to Hartmannula, and Aporthotrochilia is basal to the Cyrtophoria‐Chonotrichia clade. Trochilia alveolata sp. nov. differs from its congeners mainly by having a conspicuous alveolar layer. In addition, detailed live and infraciliature data of Hypocoma acinetarum and Trochochilodon flavus are supplied. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 164 , 1–17.  相似文献   

19.
A new sand-dwelling dinoflagellate is described from Sesoko Beach, Okinawa Island, subtropical Japan and its micromorphology is studied by means of light and electron microscopy. The cell consists of a small epitheca and a large hypothecs superficially resembling members of the unarmored genus Amphidinium. The cell is dorso-ventrally flattened and possesses a single chloroplast with a large conspicuous pyrenoid. Transmission electron microscopy revealed that the dinoflagellate possesses typical dinoflagellate cellular organization. Scanning electron microscopy demonstrated that the organism is thecate and the thecal plate arrangement is Po, 4′, 1a, 7″, 5c, 4s, 6″′, 2″″. Most of the characteristics suggest gonyaulacalean affinity of the new species. These are the presence of ventral pore, lack of canal plate, direct contact between the sulcal anterior plate and the flagellar pore, possession of six postcingular plates and asymmetrical arrangement of the antapical plates. Affinity to existing families of the order Gonyaulacales has not been determined. Based on the unique cell shape, thecal plate arrangement and the presence of ventral pore, a new genus, Amphidiniella, is established for this organism and the species is named A. sedentaria Horiguchi gen. et sp. nov.  相似文献   

20.
Chrysolepidomonas gen. nov. is described for single-celled monads with two flagella, a single chloroplast, and distinctive canistrate and dendritic scales. The type species, Chrysolepidomonas dendrolepidota sp. nov., is described for the first time. The canistrate scales bear eight “bumps” on the top surface, and the dendriticscales have a tapered base with a quatrifid tip. These organic scales are formed in the Golgi apparatus and storred in a scale reservoir. The scale reservoir is bounded on two sides by the R1 and R2 in microtubular roots of the basal apparatus. The cyst (=stomatocyst, statospore) forms endogenously by means of a silica deposition vesicle. The outer cyst surface is smooth, and the pore region is unornamented. Two other organisms bearing canistrate and dendritic scales, previously assigned to the genus Sphaleromants, are transferred to the genus Chrysolepidomonas. They are C.angalica sp. nov. and C. marine(Pienaar) comb. nov. The distinguishing features of Chrysolepidomonas and Sphaleromantis are discussed. A new family, Chrysolepidomonadceae fam. noc., is described for flagellates covered with organic scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号