共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA binding by the KP repressor protein inhibits P-element transposase activity in vitro. 总被引:1,自引:0,他引:1 下载免费PDF全文
P elements are a family of mobile DNA elements found in Drosophila. P-element transposition is tightly regulated, and P-element-encoded repressor proteins are responsible for inhibiting transposition in vivo. To investigate the molecular mechanisms by which one of these repressors, the KP protein, inhibits transposition, a variety of mutant KP proteins were prepared and tested for their biochemical activities. The repressor activities of the wild-type and mutant KP proteins were tested in vitro using several different assays for P-element transposase activity. These studies indicate that the site-specific DNA-binding activity of the KP protein is essential for repressing transposase activity. The DNA-binding domain of the KP repressor protein is also shared with the transposase protein and resides in the N-terminal 88 amino acids. Within this region, there is a C2HC putative metal-binding motif that is required for site-specific DNA binding. In vitro the KP protein inhibits transposition by competing with the transposase enzyme for DNA-binding sites near the P-element termini. 相似文献
2.
3.
Formation of motile sperm in Drosophila melanogaster requires the coordination of processes such as stem cell division, mitotic and meiotic control and structural reorganization of a cell. Proper execution of spermatogenesis entails the differentiation of cells derived from two distinct embryonic lineages, the germ line and the somatic mesoderm. Through an analysis of homozygous viable and fertile enhancer detector lines, we have identified molecular markers for the different cell types present in testes. Some lines label germ cells or somatic cyst cells in a stage-specific manner during their differentiation program. These expression patterns reveal transient identities for the cyst cells that had not been previously recognized by morphological criteria. A marker line labels early stages of male but not female germ cell differentiation and proves useful in the analysis of germ line sex-determination. Other lines label the hub of somatic cells around which germ line stem cells are anchored. By analyzing the fate of the somatic hub in an agametic background, we show that the germ line plays some role in directing its size and its position in the testis. We also describe how marker lines enable us to identify presumptive cells in the embryonic gonadal mesoderm before they give rise to morphologically distinct cell types. Finally, this collection of marker lines will allow the characterization of genes expressed either in the germ line or in the soma during spermatogenesis. 相似文献
4.
Influenza virus polymerase basic protein 1 interacts with influenza virus polymerase basic protein 2 at multiple sites. 下载免费PDF全文
Three polymerase proteins of influenza type A virus interact with each other to form the active polymerase complex. Polymerase basic protein 1 (PB1) can interact with PB2 in the presence or absence of polymerase acidic protein. In this study, we investigated the domains of PB1 involved in complex formation with PB2 in vivo, using coexpression and coimmunoprecipitation of the PB1-PB2 complex with monospecific antibodies. Results show that PB1 possesses at least two regions which can interact independently and form stable complexes with PB2. Both of these regions are located at the NH2 terminus of PB1; the COOH-terminal half of PB1 is not involved in interacting with PB2. Deletion analysis further demonstrated that the interacting regions of PB1 encompass amino acids (aa) 48 to 145 and aa 251 to 321. Linker insertions throughout the PB1 sequences did not affect complex formation with PB2. Deletion and linker-insertion mutants of PB1 were tested for polymerase activity in vivo. For this analysis, we developed a simplified assay for viral polymerase activity that uses a reporter chloramphenicol acetyltransferase gene containing the 5' and 3' ends of influenza viral promoter and nontranslating regions (minus sense) of the NS gene joined to a hepatitis delta virus ribozyme at its 3' end. This assay demonstrated that all deletion mutants of PB1 exhibited either background or greatly reduced polymerase activity irrespective of the ability to interact with PB2 and that all linker-insertion mutants except one at the extreme COOH end (L-746) of PB1 were also negative for viral polymerase activity. These results show that compared with complex formation of PB1 with PB2, the polymerase activity of PB1 was extremely sensitive to structural perturbation. 相似文献
5.
Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis 总被引:9,自引:0,他引:9
Guo C Fischhaber PL Luk-Paszyc MJ Masuda Y Zhou J Kamiya K Kisker C Friedberg EC 《The EMBO journal》2003,22(24):6621-6630
Pol kappa and Rev1 are members of the Y family of DNA polymerases involved in tolerance to DNA damage by replicative bypass [translesion DNA synthesis (TLS)]. We demonstrate that mouse Rev1 protein physically associates with Pol kappa. We show too that Rev1 interacts independently with Rev7 (a subunit of a TLS polymerase, Pol zeta) and with two other Y-family polymerases, Pol iota and Pol eta. Mouse Pol kappa, Rev7, Pol iota and Pol eta each bind to the same approximately 100 amino acid C-terminal region of Rev1. Furthermore, Rev7 competes directly with Pol kappa for binding to the Rev1 C-terminus. Notwithstanding the physical interaction between Rev1 and Pol kappa, the DNA polymerase activity of each measured by primer extension in vitro is unaffected by the complex, either when extending normal primer-termini, when bypassing a single thymine glycol lesion, or when extending certain mismatched primer termini. Our observations suggest that Rev1 plays a role(s) in mediating protein-protein interactions among DNA polymerases required for TLS. The precise function(s) of these interactions during TLS remains to be determined. 相似文献
6.
7.
Rac GTPase interacts with GAPs and target proteins through multiple effector sites. 总被引:9,自引:0,他引:9 下载免费PDF全文
Rac, a small GTPase in the ras superfamily, regulates at least two biological processes in animal cells: (i) the polymerization of actin and the assembly of integrin complexes to produce lamellipodia and ruffles; and (ii) the activity of an NADPH oxidase in phagocytic cells. NADPH oxidase activation is mediated through a rac effector protein, p67phox, and using chimeras made between rac and the closely related GTPase, rho, we have identified two distinct effector sites in rac, one N-terminal and one C-terminal, both of which are required for activation of p67phox. The same two effector sites are essential for rac-induced actin polymerization in fibroblasts. p65PAK, a ubiquitous serine/threonine kinase, interacts with rac at both the N- and C-terminal effector sites, but the GTPase-activating protein, bcr interacts with rac at a different region. This makes p65PAK, but not bcr, a candidate effector of rac-induced lamellipodium formation. 相似文献
8.
9.
10.
11.
12.
Background
Protogenin (Prtg) has been identified as a gene which is highly expressed in the mouse mandible at embryonic day 10.5 (E10.5) by a cDNA subtraction method between mandibles at E10.5 and E12.0. Prtg is a new member of the deleted in colorectal carcinoma (DCC) family, which is composed of DCC, Neogenin, Punc and Nope. Although these members play an important role in the development of the embryonic central nervous system, recent research has also shed on the non-neuronal organization. However, very little is known regarding the fetal requirement of the non-neuronal organization for Prtg and how this may be associated with the tooth germ development. This study examined the functional implications of Prtg in the developing tooth germ of the mouse lower first molar.Results
Ptrg is preferentially expressed in the early stage of organogenesis. Prtg mRNA and protein were widely expressed in the mesenchymal cells in the mandible at E10.5. The oral epithelial cells were also positive for Prtg. The expression intensity of Prtg after E12.0 was markedly reduced in the mesenchymal cells of the mandible, and was restricted to the area where the tooth bud was likely to be formed. Signals were also observed in the epithelial cells of the tooth germ. Weak signals were observed in the inner enamel epithelial cells at E16.0 and E18.0. An inhibition assay using a hemagglutinating virus of Japan-liposome containing Prtg antisense-phosphorothioated-oligodeoxynucleotide (AS-S-ODN) in cultured mandibles at E10.5 showed a significant growth inhibition in the tooth germ. The relationship between Prtg and the odontogenesis-related genes was examined in mouse E10.5 mandible, and we verified that the Bmp-4 expression had significantly been decreased in the mouse E10.5 mandible 24 hr after treatment with Prtg AS-S-ODN.Conclusion
These results indicated that the Prtg might be related to the initial morphogenesis of the tooth germ leading to the differentiation of the inner enamel epithelial cells in the mouse lower first molar. A better understanding of the Prtg function might thus play a critical role in revealing a precious mechanism in tooth germ development. 相似文献13.
14.
15.
16.
Piccioni F Ottone C Brescia P Pisa V Siciliano G Galasso A Gigliotti S Graziani F Verrotti AC 《Gene》2009,428(1-2):47-52
In Drosophila melanogaster, Cup acts as a translational regulator during oocyte maturation and early embryogenesis. In this report, we show that Cup associates with Miranda, an adaptor protein involved in localization of specific mRNA complexes in both neuroblasts and oocytes. miranda and cup also interact genetically, since reducing miranda activity worsens the oogenesis defects associated with different cup mutant alleles. miranda mRNA is first detected within the cytoplasm of egg chambers during early oogenesis, coincidentally with very low levels of Miranda protein. We furthermore show that Cup interacts with Staufen, a protein involved in mRNA localization during oogenesis and nervous system development, and the two proteins co-localize within the posterior cytoplasm of late oocytes. Our results substantiate the idea that Cup is a multi-functional protein cooperating with different protein partners to direct egg chamber development at multiple time-points. 相似文献
17.
RIP-140 interacts with multiple nuclear receptors by means of two distinct sites. 总被引:6,自引:3,他引:3 下载免费PDF全文
F L'Horset S Dauvois D M Heery V Cavaills M G Parker 《Molecular and cellular biology》1996,16(11):6029-6036
18.
Basbous N Coste F Leone P Vincentelli R Royet J Kellenberger C Roussel A 《EMBO reports》2011,12(4):327-333
The peptidoglycan (PGN)‐recognition protein LF (PGRP‐LF) is a specific negative regulator of the immune deficiency (Imd) pathway in Drosophila. We determine the crystal structure of the two PGRP domains constituting the ectodomain of PGRP‐LF at 1.72 and 1.94 Å resolution. The structures show that the LFz and LFw domains do not have a PGN‐docking groove that is found in other PGRP domains, and they cannot directly interact with PGN, as confirmed by biochemical‐binding assays. By using surface plasmon resonance analysis, we show that the PGRP‐LF ectodomain interacts with the PGRP‐LCx ectodomain in the absence and presence of tracheal cytotoxin. Our results suggest a mechanism for downregulation of the Imd pathway on the basis of the competition between PRGP‐LCa and PGRP‐LF to bind to PGRP‐LCx. 相似文献
19.
20.
DNA replication of histone gene repeats in Drosophila melanogaster tissue culture cells: multiple initiation sites and replication pause sites. 总被引:6,自引:7,他引:6 下载免费PDF全文
We showed previously that DNA replication initiates at multiple sites in the 5-kb histone gene repeating unit in early embryos of Drosophila melanogaster. The present report shows evidence that replication in the same chromosomal region initiates at multiple sites in tissue culture cells as well. First, we analyzed replication intermediates by the two-dimensional gel electrophoretic replicon mapping method and detected bubble-form replication intermediates for all fragments restricted at different sites in the repeating unit. Second, we analyzed bromodeoxyuridine-labeled nascent strands amplified by the polymerase chain reaction method and detected little differences in the size distribution of nascent strands specific to six short segments located at different sites in the repeating unit. These results strongly suggest that DNA replication initiates at multiple sites located within the repeating unit. We also found several replication pause sites located at 5' upstream regions of some histone genes. 相似文献