首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
J A Lee  P A Fortes 《Biochemistry》1986,25(25):8133-8141
(Na,K)-ATPase, the enzyme responsible for active transport of Na and K across the plasma membranes of animal cells, consists of a catalytic subunit (alpha) and a glycoprotein subunit (beta) with unknown function. We have determined the distance between fluorescent probes directed to specific sites on the alpha- and beta-subunits and ligand-induced changes in the fluorescence of a probe specifically attached to the beta-subunit. The cardiac glycoside site on the alpha-subunit was labeled with anthroylouabain [Fortes, P. A. G. (1977) Biochemistry 16, 531-540]. The oligosaccharides on the beta-subunit were labeled with lucifer yellow carbohydrazide [Lee, J. A., & Fortes, P. A. G. (1985) Biochemistry 24, 322-330]. Resonance energy transfer from anthroylouabain to lucifer yellow was measured by steady-state and time-resolved fluorescence spectroscopy. The distance between these probes was determined from the efficiency of energy transfer. The average distance between anthroylouabain and lucifer yellow was 47 A and was independent of the number of acceptor molecules attached to the beta-subunit. The measured distance corresponds to the distance between the cardiac glycoside site and the center of the labeled oligosaccharides on the beta-subunit within one alpha beta dimer. The distance was the same (47 A) when anthroylouabain was bound with ATP or Pi as phosphorylating ligands but increased to 49 A in the presence of vanadate. The change in average distance provides quantitative evidence of a conformational difference between the complexes of cardiac glycosides with (Na,K)-ATPase induced by phosphorylating ligands or by vanadate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
T Matsuda  J R Cooper 《Biochemistry》1983,22(9):2209-2213
Since one of the electrophysiological effects of pyrithiamin, an antimetabolite of thiamin, suggested an interference with sodium pump mechanisms, the effect of pyrithiamin on Na+,K+-ATPase was investigated. We found that whereas preincubation of the antimetabolite with nonneuronal preparations of Na+,K+-ATPase produced only minimal inhibition, the enzyme derived from brain preparations was markedly inhibited. This inhibition could be prevented by thiamin but not reversed. The kinetic study showed that pyrithiamin acts in a noncompetitive manner with respect to the activation of the enzyme by ATP, Na+, and K+. Pyrithiamin inhibited Na+-dependent phosphorylation and K+-stimulated phosphatase as well as ouabain binding, and these inhibitions were parallel with that of the overall Na+,K+-ATPase reaction. In addition, the antimetabolite caused a significant change in the turbidity of the enzyme suspension. The results suggest that pyrithiamin may induce a structural change of the enzyme complex.  相似文献   

3.
G Chin  M Forgac 《Biochemistry》1983,22(14):3405-3410
The (Na+ and K+)-stimulated adenosinetriphosphatase [(Na+,K+)-ATPase] consists of two different polypeptides, alpha and beta, both of which are embedded in the plasma membrane. The alpha chain from dog kidney (Na+,K+)-ATPase can be hydrolyzed at specific sites by trypsin and chymotrypsin [Castro, J., & Farley, R. A. (1979) J. Biol. Chem. 254, 2221-2228]. In order to position these sites with respect to the lipid bilayer, we have treated sealed, inside out vesicles from human red cells and unsealed kidney enzyme membranes with trypsin and chymotrypsin and have used ouabain-stimulated phosphorylation to identify the (Na+,K+)-ATPase and its fragments. All of the proteolytic sites observed in the kidney membranes are accessible in the inside out vesicles. The ouabain-inhibitable uptake of 86Rb+ in human red blood cells is resistant to externally added chymotrypsin. These results indicate that the proteolytic sites of the (Na+,K+)-ATPase are exposed on the cytoplasmic side of the membrane.  相似文献   

4.
W S Craig 《Biochemistry》1982,21(22):5707-5717
The distribution of sodium and potassium ion activated adenosinetriphosphatase [(Na+ + K+)-ATPase] among the various oligomeric forms present in a given solution is assessed unambiguously by cross-linking with glutaraldehyde. Purified enzyme dissolved in a solution of a nonionic detergent, octaethylene glycol dodecyl ether, remains dispersed and unaggregated after removal of the bulk of the detergent. Increases in the aggregation of the enzyme, which have been previously observed upon the addition of substrates to such a solution, are found to be due to changes in ionic strength rather than a consequence of the initiation of turnover. Furthermore, conditions are described that produce solutions containing stable, enzymatically active mixtures of the smaller oligomers of the asymmetric unit, alpha beta. Cross-linking by glutaraldehyde while the enzyme is turning over demonstrates that at least one of these oligomers is responsible for the observed enzymatic activity. A determination of which oligomers are present in each fraction from a glycerol gradient demonstrates that the profiles of the enzymatic activity and the concentration of monomer coincide. In addition, the monomer can form the sodium-dependent, phosphorylated intermediate of the mechanism for the enzyme. Finally, a preparation of (Na+ + K+)-ATPase, dissolved in solutions of the same nonionic detergent, can be prepared in which the predominant species (greater than 85%) is the monomer. The enzyme in this solution exhibits high specific activity, and its apparent Michaelis constants for the cationic substrates are very similar to those of the purified, membrane-bound enzyme. It is concluded from these results that a monomer of the alpha beta asymmetric unit is fully capable of catalyzing (Na+ + K+)-ATPase activity, and hence active transport, in the native enzyme. A reassessment of proposed molecular mechanisms for active transport is made in light of these discoveries.  相似文献   

5.
G Blanco  R J Melton  G Sánchez  R W Mercer 《Biochemistry》1999,38(41):13661-13669
Different isoforms of the sodium/potassium adenosinetriphosphatase (Na,K-ATPase) alpha and beta subunits have been identified in mammals. The association of the various alpha and beta polypeptides results in distinct Na,K-ATPase isozymes with unique enzymatic properties. We studied the function of the Na,K-ATPase alpha4 isoform in Sf-9 cells using recombinant baculoviruses. When alpha4 and the Na pump beta1 subunit are coexpressed in the cells, Na, K-ATPase activity is induced. This activity is reflected by a ouabain-sensitive hydrolysis of ATP, by a Na(+)-dependent, K(+)-sensitive, and ouabain-inhibitable phosphorylation from ATP, and by the ouabain-inhibitable transport of K(+). Furthermore, the activity of alpha4 is inhibited by the P-type ATPase blocker vanadate but not by compounds that inhibit the sarcoplasmic reticulum Ca-ATPase or the gastric H,K-ATPase. The Na,K-ATPase alpha4 isoform is specifically expressed in the testis of the rat. The gonad also expresses the beta1 and beta3 subunits. In insect cells, the alpha4 polypeptide is able to form active complexes with either of these subunits. Characterization of the enzymatic properties of the alpha4beta1 and alpha4beta3 isozymes indicates that both Na,K-ATPases have similar kinetics to Na(+), K(+), ATP, and ouabain. The enzymatic properties of alpha4beta1 and alpha4beta3 are, however, distinct from the other Na pump isozymes. A Na, K-ATPase activity with similar properties as the alpha4-containing enzymes was found in rat testis. This Na,K-ATPase activity represents approximately 55% of the total enzyme of the gonad. These results show that the alpha4 polypeptide is a functional isoform of the Na,K-ATPase both in vitro and in the native tissue.  相似文献   

6.
7.
K Y Xu 《Biochemistry》1989,28(14):5764-5772
Determinations of reaction stoichiometry demonstrate that the covalent incorporation of one molecule of 5'-isothiocyanatofluorescein can inactivate one molecule of sodium and potassium ion activated adenosinetriphosphatase in agreement with earlier determination of this stoichiometry. Several different modified peptides are produced, however, when the modified enzyme is digested with trypsin. One of these peptides has been identified as HLLVMK (thioureidylfluorescein)GAPER by use of a specific immunoadsorbent. The modified lysine is lysine 501 in the amino acid sequence of the alpha polypeptide of (Na+ + K+)-ATPase. This peptide has been previously isolated from such digests [Farley, R. A., Tran, C. M., Carilli, C. T., Hawke, D., & Shively, J. E. (1984) J. Biol. Chem. 259, 9532-9535]. The other specifically modified peptides have been purified and identified by amino acid sequencing. Their sequences identify lysine 480 and lysine 766 from the alpha polypeptide as amino acids modified by 5'-isothiocyanatofluorescein in reactions sensitive to the addition of ATP and responsible for inactivation of the enzyme.  相似文献   

8.
We noticed that very low cardiotonic steroid concentrations activate the Na, K-ATPase in a variety of different preparations. In the present research the effect of three cardioactive steroids on the enzymatic activity was tested. The glycosides activated the Na,K-ATPase, while the aglycone strophantidine does not. Ouabain binding studies on various preparations showed the presence of two binding site classes with different affinities. Purification procedures shift the apparent Kd values, while K+ increase them. Accordingly, the activatory and inhibitory effects may be explained by the cardiotonic steroid binding on different sites of the Na,K-ATPase molecule.  相似文献   

9.
K Y Xu 《Biochemistry》1989,28(17):6894-6899
A combination of competitive labeling with [3H]acetic anhydride [Kaplan, H., Stevenson, K. J., & Hartley, B. S. (1971) Biochem. J. 124, 289-299] and immunoaffinity chromatography is described that permits the assignment of the acid dissociation constant and the absolute nucleophilicity of individual lysines in a native enzyme. The acid dissociation constant of lysine-501 of the alpha-polypeptide in native (Na+ + K+)-ATPase was determined. This lysine had a normal pKa of 10.4. The rate constant for the reaction of the free base of lysine-501 with acetic anhydride at 10 degrees C is 400 M-1 s-1. This value is only 30% that for a fully accessible lysine in a protein. The lower than normal apparent nucleophilicity suggests that lysine-501 is hindered from reacting with its intrinsic nucleophilicity by the tertiary structure of the enzyme and is consistent with its location within a pocket that forms the active site upon the surface of the native protein.  相似文献   

10.
K Y Xu  J Kyte 《Biochemistry》1989,28(7):3009-3017
An immunoadsorbent specific for the carboxy-terminal sequence -GAPER, which comprises residues 502-506 of the alpha-polypeptide of ovine sodium and potassium ion activated adenosinetriphosphatase [(Na+ + K+)-ATPase], was used to isolate the products of the reaction between the lysine immediately preceding this sequence in the intact protein and either [3H]acetic anhydride or fluorescein 5'-isothiocyanate. Changes in the apparent nucleophilicity of this lysine, Lys501, were observed with both reagents when ATP was bound by the intact, native enzyme poised in the E1 conformation or when the structure of the enzyme was changed from the E1 conformation into the E2-P conformation. With both reagents, a decrease of more than 4-fold in the yield of incorporation occurred during the former change, but a decrease of only 2-fold occurred during the latter. Because a much larger decrease occurred when ATP was bound in the absence of a conformational change than occurred when a major conformational change took place in the absence of the occupation of the active site, these changes in the incorporation of [3H]acetyl suggest that Lys501 from the alpha polypeptide is directly involved in binding ATP within the active site of (Na+ + K+)-ATPase. The immunochemical reactions between the specific polyclonal antibodies raised against the sequence-GAPER and denatured or enzymically active (Na+ + K+)-ATPase were also investigated. Western blots and the inhibition of enzymic activity caused by the antibody have shown that it can bind to both the denatured and the native form of the alpha-polypeptide, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A ouabain p-aminobenzenediazonium derivative with a high specific radioactivity has been synthesized from ouabain and used as a photolabel for the (sodium plus potassium)-activated adenosinetriphosphatase from Electrophorus electricus electric organ and from dog kidney. In the dark it binds reversibly to the digitalis receptor site, with binding characteristics comparable to those of ouabain. The photoactivation of the ouabain derivative to produced covalent labeling of the receptor was obtained by energy transfer from a tryptophan residue in the (Na+,K+)ATPase to the ouabain p-aminobenzenediazonium molecule bound at the active site. The great advantage of this procedure compared to previous methods is that free molecules of the photoactivatable derivative are not photodecomposed. Analysis of the photolabeled polypeptides on sodium dodecyl sulfate gel electrophoresis showed that over 90% of the total radioactivity incorporated was found in the large molecular weight alpha-chain of the kidney enzyme (Mr 93 000). The same specific labeling of the alpha-subunit was obtained with a crude microsomal fraction from Electrophorus electricus. A mild tryptic fragmentation of the subunit into two peptide fragments of Mr 58 000 and 41 000, respectively, shows that the digitalis receptor is located in the N-terminal 41 000 fragment.  相似文献   

12.
The effect of ether and halothane on the kinetics of sodium and potassium currents were investigated in the crayfish giant axon. Both general anesthetics produced a reversible, dose-dependent speeding up of sodium current inactivation at all membrane potentials, with no change in the phase of the currents. Double-pulse inactivation experiments with ether also showed faster inactivation, but the rate of recovery from inactivation at negative potentials was not affected. Ether shifted the midpoint of the steady-state fast inactivation curve in the hyperpolarizing direction and made the curve steeper. The activation of potassium currents was faster with ether present, with no change in the voltage dependence of steady-state potassium currents. Ether and halothane are known to perturb the structure of lipid bilayer membranes; the alterations in sodium and potassium channel gating kinetics are consistent with the hypothesis that the rates of the gating processes of the channels can be affected by the state of the lipids surrounding the channels, but a direct effect of ether and halothane on the protein part of the channels cannot be ruled out. Ether did not affect the capacitance of the axon membrane.  相似文献   

13.
Polycondensation of a catalase (EC 1.11.1.6) with glutaraldehyde in order to stabilize the quaternary structure of an enzyme, maintain its activity, and protect it from thermal denaturation was studied. Synthesis showed a superequivalent utilization of the aldehyde groups relative to the catalase amine groups, as a result of the formation of glutaraldehyde oligomers linked to the enzyme.  相似文献   

14.
B Roux  G Fellous  C Godinot 《Biochemistry》1984,23(3):534-537
The conformational changes induced by the binding of different effectors on F1-ATPase are investigated by using circular dichroism and are related to enzyme activity. The hydrophilic part of the terminal enzyme of oxidative phosphorylation, F1-ATPase, solubilized from the pig heart mitochondrial membrane contains both regulatory and catalytic sites which can bind nucleotides and phosphate. The circular dichroic spectra of F1-ATPase in the absence or in the presence of ADP, Mg2+, phosphate, and the substrate analogue guanosine 5'-(beta, gamma-imidotriphosphate) [GMP-P-(NH)P] were recorded and analyzed in terms of secondary structure. The most significant result is a sizable increase from 35% to 42% of the alpha-helix content when the enzyme is incubated with all the effectors. Since the kinetic study showed that GMP-P(NH)P is a competitive inhibitor of MgATP with or without preincubation of the enzyme with ADP and phosphate, it was concluded that the catalytic and regulatory sites can be simultaneously occupied by ADP and GMP-P-(NH)P. The increase of alpha-helix content is then interpreted by a conformational change that occurs only after occupation of both types of sites.  相似文献   

15.
Growth hormone conformation and conformational equilibria   总被引:3,自引:0,他引:3  
  相似文献   

16.
Examining solute-induced changes in protein conformational equilibria is a long-standing method for probing the role of water in maintaining protein stability. Interpreting the molecular details governing the solute-induced effects, however, remains controversial. We present experimental and theoretical data for osmolyte-induced changes in the stabilities of the A and N states of yeast iso-1-ferricytochrome c. Using polyol osmolytes of increasing size, we observe that osmolytes alone induce A-state formation from acid-denatured cytochrome c and N state formation from the thermally denatured protein. The stabilities of the A and N states increase linearly with osmolyte concentration. Interestingly, osmolytes stabilize the A state to a greater degree than the N state. To interpret the data, we divide the free energy for the reaction into contributions from nonspecific steric repulsions (excluded volume effects) and from binding interactions. We use scaled particle theory (SPT) to estimate the free energy contributions from steric repulsions, and we estimate the contributions from water-protein and osmolyte-protein binding interactions by comparing the SPT calculations to experimental data. We conclude that excluded volume effects are the primary stabilizing force, with changes in water-protein and solute-protein binding interactions making favorable contributions to stability of the A state and unfavorable contributions to the stability of the N state. The validity of our interpretation is strengthened by analysis of data on osmolyte-induced protein stabilization from the literature, and by comparison with other analyses of solute-induced changes in conformational equilibria.  相似文献   

17.
A study was made of the combined effect of ionizing radiation and various concentrations of glutaric aldehyde (0.00125, 0.0025, 0.5, and 1 per cent) on viability of bacteria differing in a cell wall structure, radiosensitivity, and activity of DNA repair system. The combined effect of the two factors was shown to produce an effect of superadditive enhancement of bacterial cell death. The synergism was more pronounced in highly radiosensitive bacteria.  相似文献   

18.
The fluorescence emission spectrum of dansylundecanoic acid is sensitive to the environment and appears at a lower wavelength when the fatty acid is bound to protein than when it is bound to phospholipid. When bound to the (Ca2+-Mg2+)-ATPase of sarcoplasmic reticulum, the emission spectrum can be resolved into separate components assigned to fatty acid bound to protein and to lipid. Efficiency of energy transfer from the tryptophan residues of the ATPase to dansylundecanoic is higher for protein-bound probe than for lipid-bound probe. Fluorescence titrations are consistent with three fatty acid binding sites per ATPase with a Kd of 7 microM, and these sites are postulated to occur at the protein-protein interface in ATPase oligomers. Fatty acid incorporated into the lipid component of the membrane appears to be bound outside the lipid annulus around the protein.  相似文献   

19.
M Esmann  L I Horváth  D Marsh 《Biochemistry》1987,26(26):8675-8683
The sodium and potassium ion activated adenosinetriphosphatase [(Na+,K+)-ATPase] in membranous preparations from Squalus acanthias has been spin-labeled on sulfhydryl groups after prelabeling with N-ethylmaleimide. Saturation-transfer electron spin resonance spectroscopy has been used to study the rotational motions of the labeled protein on the microsecond time scale. Effective rotational correlation times deduced from the diagnostic line-height ratios in the second-harmonic, 90 degrees out-of-phase (V2') spectra are much larger than those deduced from the spectral integrals, indicating the presence of large-scale segmental motions, in addition to rotation of the protein as a whole. Experiments involving controlled cross-linking of the protein by glutaraldehyde, as well as measurements of the line broadening of the conventional electron spin resonance spectra, support this interpretation. Both the spectral integrals and diagnostic line-height ratios are found to increase irreversibly with time on incubation at temperatures greater than 20 degrees C, corresponding to a decrease in the segmental motion of the protein and probably also in the overall protein rotation. The native enzyme displays a marked nonlinearity in the Arrhenius temperature dependence of the activity at temperatures above 20 degrees C, and the activity decreases with a half-life of ca. 70 min on incubation at 37 degrees C (but not on incubation at low temperature), paralleling the time- and temperature-dependent changes in the saturation-transfer spectra of the labeled protein. Both of these observations suggest that the changes observed in the molecular dynamics could correspond to functional properties of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Polycondensation of a catalase (EC 1.11.1.6) with glutaraldehyde in order to stabilize the quaternary structure of an enzyme, maintain its activity, and protect it from thermal denaturation was studied. Synthesis showed a superequivalent utilization of the aldehyde groups relative to the catalase amine groups, as a result of the formation of glutaraldehyde oligomers linked to the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号