首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Over 25 million Americans suffer from osteoporosis. Bone size and strength depends both upon the level of adaptation due to physical activity (applied load), and genetics. We hypothesized that bone adaptation to loads differs among mice breeds and bone sites. Forty-five adult female mice from three inbred strains (C57BL/6 [B6], C3H/HeJ [C3], and DBA/2J [D2]) were loaded at the right tibia and ulna in vivo with non-invasive loading devices. Each loading session consisted of 99 cycles at a force range that induced approximately 2000 microstrain (microepsilon) at the mid-shaft of the tibia (2.5 to 3.5 N force) and ulna (1.5 to 2 N force). The right and left ulnae and tibiae were collected and processed using protocols for histological undecalcified cortical bone slides. Standard histomorphometry techniques were used to quantify new bone formation. The histomorphometric variables include percentage mineralizing surface (%MS), mineral apposition rate (MAR), and bone formation rate (BFR). Net loading response [right-left limb] was compared between different breeds at tibial and ulnar sites using two-way ANOVA with repeated measures (p<0.05). Significant site differences in bone adaptation response were present within each breed (p<0.005). In all the three breeds, the tibiae showed greater percentage MS, MAR and BFR than the ulna at similar in vivo load or mechanical stimulus (strain). These data suggest that the bone formation due to loading is greater in the tibiae than the ulnae. Although, no significant breed-related differences were found in response to loading, the data show greater trends in tibial bone response in B6 mice as compared to D2 and C3 mice. Our data indicate that there are site-specific skeletal differences in bone adaptation response to similar mechanical stimulus.  相似文献   

2.
Candidates for the mechanosensory system in bone   总被引:22,自引:0,他引:22  
Some potential mechanisms by which bone cells sense mechanical loads are described and hypotheses concerning the functioning of these mechanisms are explored. It is well known that bone tissue adapts its structure to its mechanical load environment. Recent research has illuminated the biological response of bone to mechanical loading at the cellular level, but the precise mechanosensory system that signals bone cells to deposit or resorb tissue has not been identified. The purpose of this paper is to describe the current status of this research and to suggest some possible mechanosensory systems by which bone cells might sense environmental loads.  相似文献   

3.
The ability of bone to adapt to its mechanical environment is well recognized, although the specific mechanical parameters initiating or maintaining the adaptive responses have yet to be identified. Recently introduced mathematical models offer the potential to aid in the identification of such parameters, although these models have not been well validated experimentally or clinically. We formulated a complementary experimental/analytic approach, using an animal model with a well-controlled mechanical environment combined with finite element modeling (FEM). We selected the functionally isolated turkey ulna, since the loading could be completely characterized and the periosteal adaptive responses subsequently monitored and quantified after four and eight weeks of loading. Known loads input into a three-dimensional, linearly elastic FEM of the ulna then permitted full-field mechanical characterization of the ulna. The FEM was validated against a normal strain-gaged turkey ulna, loaded in vivo in an identical fashion to the experimental ulnae. Twenty-four candidate mechanical parameters were then compared to the quantified adaptive responses, using statistical techniques. The data supported strain energy density, longitudinal shear stress, and tensile principal stress/strain as the mechanical parameters most likely related to the initiation of the remodeling response. Model predictions can now suggest new experiments, against which the predictions can be supported or falsified.  相似文献   

4.
Bone adapts its morphology (density/micro- architecture) in response to the local loading conditions in such a way that a uniform tissue loading is achieved (‘Wolff’s law’). This paradigm has been used as a basis for bone remodeling simulations to predict the formation and adaptation of trabecular bone. However, in order to predict bone architectural changes in patients, the physiological external loading conditions, to which the bone was adapted, need to be determined. In the present study, we developed a novel bone loading estimation method to predict such external loading conditions by calculating the loading history that produces the most uniform bone tissue loading. We applied this method to murine caudal vertebrae of two groups that were in vivo loaded by either 0 or 8 N, respectively. Plausible load cases were sequentially applied to micro-finite element models of the mice vertebrae, and scaling factors were calculated for each load case to derive the most uniform tissue strain-energy density when all scaled load cases are applied simultaneously. The bone loading estimation method was able to predict the difference in loading history of the two groups and the correct load magnitude for the loaded group. This result suggests that the bone loading history can be estimated from its morphology and that such a method could be useful for predicting the loading history for bone remodeling studies or at sites where measurements are difficult, as in bone in vivo or fossil bones.  相似文献   

5.
Patterns of variation in bone size and shape provide crucial data for reconstructing hominin paleobiology, including ecogeographic adaptation, life history, and functional morphology. Measures of bone strength, including robusticity (diaphyseal thickness relative to length) and cross-sectional geometric properties such as moments of area, are particularly useful for inferring behavior because bone tissue adapts to its mechanical environment. Particularly during skeletal growth, exercise-induced strains can stimulate periosteal modeling so that, to some extent, bone thickness reflects individual behavior. Thus, patterns of skeletal robusticity have been used to identify gender-based activity differences, temporal shifts in mobility, and changing subsistence strategies. Although there is no doubt that mechanical loading leaves its mark on the skeleton, less is known about whether individuals differ in their skeletal responses to exercise. For example, the potential effects of hormones or growth factors on bone-strain interactions are largely unexplored. If the hormonal background can increase or decrease the effects of exercise on skeletal robusticity, then the same mechanical loads might cause different degrees of bone response in different individuals. Here I focus on the role of the hormone estrogen in modulating exercise-induced changes in human bone thickness.  相似文献   

6.
Increased mechanical loading of bone with the rat tibia four-point bending device stimulates bone formation on periosteal and endocortical surfaces. With long-term loading cell activity diminishes, and it has been reported that early gains in bone size may reverse. This study examined the time course for bone cellular and structural response after 6, 12, and 18 wk of loading at 1,200-1, 700 microstrain (muepsilon). Bone formation rates, measured by histomorphometry, were compared within groups, between loaded and contralateral nonloaded tibiae, and between weeks. Formation surface, mineral apposition rate, and bone formation rate on periosteal and endocortical surfaces were elevated after 6 wk of loading. By 12 wk of loading, periosteal and endocortical formation surface and endocortical mineral apposition rates were elevated. By 18 wk of loading, periosteal adaptation appeared complete, whereas endocortical mineral apposition rate remained elevated. No periosteal resorption was observed. Average thickness of new bone formed, from baseline to collection, was greater in loaded than nonloaded tibiae by week 6 and was maintained through week 18. Early increases in bone formation result in periosteal apposition of new bone that persists after formation ceases.  相似文献   

7.
A feedback controlled loading apparatus for the rat tail vertebra was developed to deliver precise mechanical loads to the eighth caudal vertebra (C8) via pins inserted into adjacent vertebrae. Cortical bone strains were recorded using strain gages while subjecting the C8 in four cadaveric rats to mechanical loads ranging from 25 to 100 N at 1 Hz with a sinusoidal waveform. Finite element (FE) models, based on micro computed tomography, were constructed for all four C8 for calculations of cortical and trabecular bone tissue strains. The cortical bone strains predicted by FE models agreed with strain gage measurements, thus validating the FE models. The average measured cortical bone strain during 25-100 N loading was between 298 +/- 105 and 1210 +/- 297 microstrain (muepsilon). The models predicted average trabecular bone tissue strains ranging between 135 +/- 35 and 538 +/- 138 mu epsilon in the proximal region, 77 +/- 23-307 +/- 91 muepsilon in the central region, and 155 +/- 36-621 +/- 143 muepsilon in the distal region for 25-100 N loading range. Although these average strains were compressive, it is also interesting that the trabecular bone tissue strain can range from compressive to tensile strains (-1994 to 380 mu epsilon for a 100 N load). With this novel approach that combines an animal model with computational techniques, it could be possible to establish a quantitative relationship between the microscopic stress/strain environment in trabecular bone tissue, and the biosynthetic response and gene expression of bone cells, thereby study bone adaptation.  相似文献   

8.
Most in vivo studies addressing the skeletal responses of mice to mechanical loading have targeted cortical bone. To investigate trabecular bone responses also we have developed a caudal vertebral axial compression device (CVAD) that transmits mechanical loads to compress the fifth caudal vertebra via stainless steel pins inserted into the forth and sixth caudal vertebral bodies. Here, we used the CVAD in C57BL/6 (B6) and C3H/Hej (C3H) female mice (15 weeks of age) to investigate whether the effect of regular bouts of mechanical stimulation on bone modeling and bone mass was dependent on dose and genotype. A combined micro-computed tomographic and dynamic histomorphometric analysis was carried out at the end of a 4-week loading regimen (3,000 cycles, 10 Hz, 3 x week) for load amplitudes of 0N, 2N, 4N and 8N. Significant increases in trabecular bone mass of 9 and 21% for loads of 4N and 8N, respectively, were observed in B6 mice. A significant increase of 10% in trabecular bone mass occurred for a load of 8N in the C3H strain. For other loads, no significant increases were detected. Both mouse strains exhibited substantial increases in trabecular bone formation rates for all loads, B6: 111% (2N), 86% (4N), 164% (8N), C3H: 41% (2N), 38% (4N), 141% (8N). Significant decreases in osteoclast number of 146 and 93% for a load of 8N were detected in B6 and C3H mice, respectively. These findings demonstrate that the effect of loading on the structural and functional parameters of bone is dose and genotype dependent. The caudal vertebral loading model established here is proposed for further studies addressing the molecular processes involved in the skeletal responses to mechanical stimuli.  相似文献   

9.
This study investigated the hypothesis that dynamic compression loading enhances tissue formation and increases mechanical properties of anatomically shaped tissue engineered menisci. Bovine meniscal fibrochondrocytes were seeded in 2%w/v alginate, crosslinked with CaSO(4), injected into μCT based molds, and post crosslinked with CaCl(2). Samples were loaded via a custom bioreactor with loading platens specifically designed to load anatomically shaped constructs in unconfined compression. Based on the results of finite element simulations, constructs were loaded under sinusoidal displacement to yield physiological strain levels. Constructs were loaded 3 times a week for 1 h followed by 1 h of rest and loaded again for 1 h. Constructs were dynamically loaded for up to 6 weeks. After 2 weeks of culture, loaded samples had 2-3.2 fold increases in the extracellular matrix (ECM) content and 1.8-2.5 fold increases in the compressive modulus compared with static controls. After 6 weeks of loading, glycosaminoglycan (GAG) content and compressive modulus both decreased compared with 2 week cultures by 2.3-2.7 and 1.5-1.7 fold, respectively, whereas collagen content increased by 1.8-2.2 fold. Prolonged loading of engineered constructs could have altered alginate scaffold degradation rate and/or initiated a catabolic cellular response, indicated by significantly decreased ECM retention at 6 weeks compared with 2 weeks. However, the data indicates that dynamic loading had a strikingly positive effect on ECM accumulation and mechanical properties in short term culture.  相似文献   

10.
Functional adaptation of the femur has been investigated in several studies by embedding bone remodelling algorithms in finite element (FE) models, with simplifications often made to the representation of bone’s material symmetry and mechanical environment. An orthotropic strain-driven adaptation algorithm is proposed in order to predict the femur’s volumetric material property distribution and directionality of its internal structures within a continuum. The algorithm was applied to a FE model of the femur, with muscles, ligaments and joints included explicitly. Multiple load cases representing distinct frames of two activities of daily living (walking and stair climbing) were considered. It is hypothesised that low shear moduli occur in areas of bone that are simply loaded and high shear moduli in areas subjected to complex loading conditions. In addition, it is investigated whether material properties of different femoral regions are stimulated by different activities. The loading and boundary conditions were considered to provide a physiological mechanical environment. The resulting volumetric material property distribution and directionalities agreed with ex vivo imaging data for the whole femur. Regions where non-orthogonal trabecular crossing has been documented coincided with higher values of predicted shear moduli. The topological influence of the different activities modelled was analysed. The influence of stair climbing on the properties of the femoral neck region is highlighted. It is recommended that multiple load cases should be considered when modelling bone adaptation. The orthotropic model of the complete femur is released with this study.  相似文献   

11.
Theories of mechanical adaptation of bone suggest that mechanical loading causes bone formation at discrete locations within bone microstructure experiencing the greatest mechanical stress/strain. Experimental testing of such theories requires in vivo loading experiments and high-resolution finite element models to determine the distribution of mechanical stresses. Finite element models of in vivo loading experiments typically assume idealized boundary conditions with applied load perfectly oriented on the bone, however small misalignments in load orientation during an in vivo experiment are unavoidable, and potentially confound the ability of finite element models to predict locations of bone formation at the scale of micrometers. Here we demonstrate two different three-dimensional spatial correlation methods to determine the effects of misalignment in load orientation on the locations of high mechanical stress/strain in the rodent tail loading model. We find that, in cancellous bone, the locations of tissue with high stress are maintained under reasonable misalignments in load orientation (p<0.01). In cortical bone, however, angular misalignments in the dorsal direction can alter the locations of high mechanical stress, but the locations of tissue with high stress are maintained under other misalignments (p<0.01). We conclude that, when using finite element models of the rodent tail loading model, small misalignments in loading orientation do not affect the predicted locations of high mechanical stress within cancellous bone.  相似文献   

12.

Background  

Bone adapts to mechanical strain by rearranging the trabecular geometry and bone density. The common finite element methods used to simulate this adaptation have inconsistencies regarding material properties at each node and are computationally demanding. Here, a volume-based, non-continuum formulation is proposed as an alternative. Adaptive processes corresponding to various external mechanical loading conditions are simulated for the femur.  相似文献   

13.
Mechanical loading in bone leads to the activation of bone-forming pathways that are most likely associated with a minimum strain threshold being experienced by the osteocyte. To investigate the correlation between cellular response and mechanical stimuli, researchers must develop accurate ways to measure/compute strain both externally on the bone surface and internally at the osteocyte level. This study investigates the use of finite element (FE) models to compute bone surface strains on the mouse forearm. Strains from three FE models were compared to data collected experimentally through strain gaging and digital image correlation (DIC). Each FE model was assigned subject-specific bone properties and consisted of one-dimensional springs representing the interosseous membrane. After three-point bending was performed on the ulnae and radii, moment of inertia was determined from microCT analysis of the bone region between the supports and then used along with standard beam analyses to calculate the Young’s modulus. Non-contact strain measurements from DIC were determined to be more suitable for validating numerical results than experimental data obtained through conventional strain gaging. When comparing strain responses in the three ulnae, we observed a 3–14% difference between numerical and DIC strains while the strain gage values were 37–56% lower than numerical values. This study demonstrates a computational approach for capturing bone surface strains in the mouse forearm. Ultimately, strains from these macroscale models can be used as inputs for microscale and nanoscale FE models designed to analyze strains directly in the osteocyte lacunae.  相似文献   

14.
According to mechanobiologic theories, persistent intermittent mechanical stimulation is required to maintain differentiated cartilage. In a rat model for bone repair, we studied the fate of mechanically induced cartilage after unloading. In three groups of rats, regenerating mesenchymal tissue was submitted to different loading conditions in bone chambers. Two groups were immediately killed after loading periods of 3 or 6 weeks (the 3-group and the 6-group). The third group was loaded for 3 weeks and then kept unloaded for another 3 weeks (the (3 + 3)-group). Cartilage was found in all loaded groups. Without loading, cartilage does not appear in this model. In the 3-group there was no clear ongoing endochondral ossification, the 6-group showed ossification in 2 out of 5 cartilage containing specimens, and in the (3 + 3)-group all cartilage was undergoing ossification. These results suggest a tendency of the cartilage to be maintained also under unloaded conditions until it is reached by bone that can replace it through endochondral ossification.Additional measurements showed less amount of new bone in the loaded specimens. In most of the loaded specimens in the 3-group, necrotic bone fragments were seen embedded in the fibrous tissue layer close to the loading piston, indicating that bone tissue had been resorbed due to the hydrostatic compressive load. In some specimens, a continuous cartilage layer covered the end of the specimen and seemed to protect the underlying bone from pressure-induced resorption. We suggest that one of the functions of the cartilage forming in the compressive loaded parts of a bone callus is to protect the surrounding bone callus from pressure-induced fluid flow leading to resorption.  相似文献   

15.
Mechanical load influences embryonic ventricular growth, morphogenesis, and function. However, little is known about changes in regional passive ventricular properties during the development of altered mechanical loading conditions in the embryo. We tested the hypothesis that regional mechanical loads are a critical determinant of embryonic ventricular passive properties. We measured biaxial passive right and left ventricular (RV and LV, respectively) stress-strain relations in chick embryos at Hamburger-Hamilton stages 21 and 27 after conotruncal banding (CTB) to increase biventricular pressure load or left atrial ligation (LAL) to reduce LV volume load and increase RV volume load. In the RV, wall strains at end-diastolic (ED) pressure normalized whereas ED stresses increased after either CTB or LAL during development. In the left ventricle, both ED strain and stress normalized after CTB, whereas both remained reduced with significantly increased myocardial stiffness after LAL. These results suggest that the embryonic ventricle adapts to chronically altered mechanical loading conditions by changing specific RV and LV passive properties. Thus regional mechanical load has a critical role during cardiogenesis.  相似文献   

16.
Variation in upper limb long bone cross‐sectional properties may reflect a phenotypically plastic response to habitual loading patterns. Structural differences between limb bones have often been used to infer past behavior from hominin remains; however, few studies have examined direct relationships between behavioral differences and bone structure in humans. To help address this, cross‐sectional images (50% length) of the humeri and ulnae of university varsity‐level swimmers, cricketers, and controls were captured using peripheral quantitative computed tomography. High levels of humeral robusticity were found in the dominant arms of cricketers, and bilaterally among swimmers, whereas the most gracile humeri were found in both arms of controls, and the nondominant arms of cricketers. In addition, the dominant humeri of cricketers were more circular than controls. The highest levels of ulnar robusticity were also found in the dominant arm of cricketers, and bilaterally amongst swimmers. Bilateral asymmetry in humeral rigidity among cricketers was greater than swimmers and controls, while asymmetry for ulnar rigidity was greater in cricketers than controls. The results suggest that more mechanically loaded upper limb elements––unilaterally or bilaterally––are strengthened relative to less mechanically loaded elements, and that differences in mechanical loading may have a more significant effect on proximal compared to distal limb segments. The more circular humerus in the dominant arm in cricketers may be an adaptation to torsional strain associated with throwing activities. The reported correspondence between habitual activity patterns and upper limb diaphyseal properties may inform future behavioral interpretations involving hominin skeletal remains. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
To facilitate the investigation of bone formation, in vivo, in response to mechanical loading a caudal vertebra axial compression device (CVAD) has been developed to deliver precise mechanical loads to the fifth caudal vertebra (C5) of the C57BL/6 female mouse. A combined experimental and computational approach was used to quantify the micro-mechanical strain induced in trabecular and cortical components following static and dynamic loading using the CVAD. Cortical bone strains were recorded using micro-strain gages. Finite element (FE) models based on micro-computed tomography were constructed for all C5 vertebrae. Both theoretical and experimental cortical strains correlated extremely well (R(2)>0.96) for a Young's modulus of 14.8 GPa, thus validating the FE model. In this study, we have successfully applied mechanical loads to the C5 murine vertebrae, demonstrating the potential of this model to be used for in vivo loading studies aimed at stimulating both trabecular and cortical bone adaptation.  相似文献   

18.
The expanding nasal septal cartilage is believed to create a force that powers midfacial growth. In addition, the nasal septum is postulated to act as a mechanical strut that prevents the structural collapse of the face under masticatory loads. Both roles imply that the septum is subject to complex biomechanical loads during growth and mastication. The purpose of this study was to measure the mechanical properties of the nasal septum to determine (1) whether the cartilage is mechanically capable of playing an active role in midfacial growth and in maintaining facial structural integrity and (2) if regional variation in mechanical properties is present that could support any of the postulated loading regimens. Porcine septal samples were loaded along the horizontal or vertical axes in compression and tension, using different loading rates that approximate the in vivo situation. Samples were loaded in random order to predefined strain points (2–10%) and strain was held for 30 or 120 seconds while relaxation stress was measured. Subsequently, samples were loaded until failure. Stiffness, relaxation stress and ultimate stress and strain were recorded. Results showed that the septum was stiffer, stronger and displayed a greater drop in relaxation stress in compression compared to tension. Under compression, the septum displayed non-linear behavior with greater stiffness and stress relaxation under faster loading rates and higher strain levels. Under tension, stiffness was not affected by strain level. Although regional variation was present, it did not strongly support any of the suggested loading patterns. Overall, results suggest that the septum might be mechanically capable of playing an active role in midfacial growth as evidenced by increased compressive residual stress with decreased loading rates. However, the low stiffness of the septum compared to surrounding bone does not support a strut role. The relatively low stiffness combined with high stress relaxation under fast loading rates suggests that the nasal septum is a stress dampener, helping to absorb and dissipate loads generated during mastication.  相似文献   

19.
This study compares the ability of μCT image-based registration, 2D structural rigidity analyses and multimodal continuum-level finite element (FE) modeling in evaluating the mechanical stability of healthy, osteolytic, and mixed osteolytic/osteoblastic metastatically involved rat vertebrae. μMR and μCT images (loaded and unloaded) were acquired of lumbar spinal motion segments from 15rnu/rnu rats (five per group). Strains were calculated based on image registration of the loaded and unloaded μCT images and via analysis of FE models created from the μCT and μMR data. Predicted yield load was also calculated through 2D structural rigidity analysis of the axial unloaded μCT slices. Measures from the three techniques were compared to experimental yield loads. The ability of these methods to predict experimental yield loads were evaluated and image registration and FE calculated strains were directly compared. Quantitatively for all samples, only limited weak correlations were found between the image-based measures and experimental yield load. In comparison to the experimental yield load, we observed a trend toward a weak negative correlation with median strain calculated using the image-based strain measurement algorithm (r=-0.405, p=0.067), weak significant correlations (p<0.05) with FE based median and 10th percentile strain values (r=-0.454, -0.637, respectively), and a trend toward a weak significant correlation with FE based mean strain (r=-0.366, p=0.09). Individual group analyses, however, yielded more and stronger correlations with experimental results. Considering the image-based strain measurement algorithm we observed moderate significant correlations with experimental yield load (p<0.05) in the osteolytic group for mean and median strain values (r=-0.840, -0.832, respectively), and in the healthy group for median strain values (r=-0.809). Considering the rigidity-based predicted yield load, we observed a strong significant correlation with the experimental yield load in the mixed osteolytic/osteoblastic group (r=0.946) and trend toward a moderate correlation with the experimental yield load in the osteolytic group (r=0.788). Qualitatively, strain patterns in the vertebral bodies generated using image registration and FEA were well matched, yet quantitatively a significant correlation was found only between mean strains in the healthy group (r=0.934). Large structural differences in metastatic vertebrae and the complexity of motion segment loading may have led to varied modes of failure. Improvements in load characterization, material properties assignments and resolution are necessary to yield a more generalized ability for image-based registration, structural rigidity and FE methods to accurately represent stability in healthy and pathologic scenarios.  相似文献   

20.
Fatigue loading of bone, from the activities of daily living in the elderly, or from prolonged exercise in the young, can lead to increased risk of fracture. Elderly patients with osteoporosis are particularly prone to fragility fractures of the vertebrae, where load is carried primarily by trabecular bone. In this study, specimens of bovine trabecular bone were loaded in compressive fatigue at four different normalized stresses to one of six maximum strains. The resulting change in modulus and residual strain accumulation were measured over the life of the fatigue test. The number of cycles to reach a given maximum compressive strain increased with decreasing normalized stress. Modulus reduction and specimen residual strain increased with increasing maximum compressive strain, but few differences were observed between specimens loaded to the same maximum strain at different normalized stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号