首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RANK ligand   总被引:3,自引:0,他引:3  
RANK ligand (RANKL), a key mediator of bone resorption in normal and pathological states, is expressed as membrane-bound or soluble forms by tissues as diverse as lymph nodes, spleen, thymus and bone-forming cells. In normal bone turnover and in bone metastasis, RANKL stimulates the formation and activity of bone-removing cells, osteoclasts, by binding to its cognate receptor, RANK, on osteoclasts and their progenitors; these processes are disrupted by binding of RANKL to osteoprotegerin (OPG), a soluble decoy receptor. Whilst no mutations in the RANKL gene have yet been identified in human disease, mutations that result in enhanced RANK signalling through inactivation of OPG or activation of RANK are associated with Juvenile Paget's disease and familial expansile osteolysis, respectively. This review focuses on the central role of RANKL in bone resorption and on the therapeutic targeting of RANKL in osteoporosis, humoral hypercalcaemia of malignancy and bone metastasis.  相似文献   

2.
RANK and its ligand RANKL are key molecules in bone metabolism and are critically involved in pathologic bone disorders. Deregulation of the RANK/RANKL system is for example a main reason for the development of postmenopausal osteoporosis, which affects millions of women worldwide. Another essential function of RANK and RANKL is the development of a functional lactating mammary gland during pregnancy. Sex hormones, in particular progesterone, induce RANKL expression resulting in proliferation of mammary epithelial cells. Moreover, RANK and RANKL have been shown to regulate mammary epithelial stem cells. RANK and RANKL were also identified as critical mechanism in the development of hormone-induced breast cancer and metastatic spread to bone. In this review, we will focus on the various RANK/RANKL functions ranging from bone physiology, immune regulation, and initiation of breast cancer.  相似文献   

3.
Receptor activator of NFκB ligand (RANKL), RANK, and osteoprotegerin (OPG) represent the key regulators of bone metabolism both in normal and pathological conditions, including bone metastases. To our knowledge, no previous studies investigated and compared RANK expression in primary tumors and in bone metastases from the same patient. We retrospectively examined RANK expression by immunohistochemistry in 74 bone metastases tissues from solid tumors, mostly breast, colorectal, renal, lung, and prostate cancer. For 40 cases, tissue from the corresponding primary tumor was also analyzed. Sixty‐six (89%) of the 74 bone metastases were RANK‐positive and, among these, 40 (59.5%) showed more than 50% of positive tumor cells. The median percentage of RANK‐positive cells was 60% in primary tumors and metastases, without any statistically significant difference between the two groups (P = 0.194). The same percentage was obtained by considering only cases with availability of samples both from primary and metastasis. Our study shows that RANK is expressed by solid tumors, with high concordance between bone metastasis and corresponding primary tumor. These data highlight the central role of RANK/RANKL/OPG pathway as potential therapeutic target not only in bone metastasis management, but also in the adjuvant setting. J. Cell. Physiol. 226: 780–784, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
RANK and RANKL, the key regulators of osteoclast differentiation and activation, also play an important role in the control of proliferation and differentiation of mammary epithelial cells during pregnancy. Here, we show that RANK protein expression is strictly regulated in a spatial and temporal manner during mammary gland development. RANK overexpression under the control of the mouse mammary tumor virus (MMTV) promoter in a transgenic mouse model results in increased mammary epithelial cell proliferation during pregnancy, impaired differentiation of lobulo-alveolar structures, decreased expression of the milk proteins beta-casein and whey acidic protein, and deficient lactation. We also show that treatment of three-dimensional in vitro cultures of primary mammary cells from MMTV-RANK mice with RANKL results in increased proliferation and decreased apoptosis in the luminal area, resulting in bigger acini with filled lumens. Taken together, these results suggest that signaling through RANK not only promotes proliferation but also inhibits the terminal differentiation of mammary epithelial cells. Moreover, the increased proliferation and survival observed in a three-dimensional culture system suggests a role for aberrant RANK signaling during breast tumorigenesis.  相似文献   

5.
Receptor activator of NF-kappaB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) play essential roles in bone metabolism. RANKL binds to RANK, which is expressed by osteoclasts whereas OPG acts as its decoy receptor blocking the RANK-RANKL interaction. OPG/RANK/RANKL are produced by variety of tissues including epithelial and mesenchymal cells. However, the role of RANKL/OPG in thyroid pathophysiology remains unclear. The aim of this study was to determine the expression pattern of RANK/RANKL/OPG in primary neoplastic thyroid lesions and in lymph node metastases. 27 specimens from total thyroidectomy were studied by immunohistochemistry: 9 papillary carcinomas (PC), 9 medullary carcinomas (MC), 9 macrovesicular adenomas (MA). Immunohistochemical evidence of RANKL was found in 30 % of MC, 22% of PC while RANKL has never been detected in PC. The expression of RANK is closely related to RANKL. OPG was restricted to the cytoplasm of epithelial in 1 MA and 1 MC. In contrast to pathological tissues, any expression of OPG/RANK/RANKL was detected in healthy thyroid tissue. This work reveals for the first time that OPG/RANK/RANKL are expressed in the pathological thyroid gland by follicular cells, by malignant parafollicular cells as well as in metastatic lymph node microenvironment. Thus OPG/RANK/RANKL molecular triad might play a role during pathogenesis of follicular and parafollicular tumors.  相似文献   

6.
Receptor activator of nuclear factor-kB ligand (RANKL), a well-known membrane-bound molecule expressed on osteoblasts and bone marrow stromal cells, is believed to induce osteoclast differentiation and activation by binding to the receptor activator of nuclear factor-kB (RANK), which is expressed on the surface of osteoclast lineage cells. This induction is inhibited by osteoprotegerin (OPG) that is secreted by osteoblast lineage and acts as a decoy receptor of RANKL. Currently the essential role of the OPG/RANKL/RANK system in the process of osteoclast maturation, as well as activation, has been well established, and the majority of bone resorption regulators control osteoclast formation and activation through their effects on this system and especially on the relative expression levels of RANKL and OPG [1].  相似文献   

7.
The RANKL/OPG/RANK pathway is the key mediator of osteoclastogenesis. Mononuclear cells may be implicated in post-menopausal osteoporosis. The effect of estrogen or raloxifene on bone resorption and the expression of RANKL/OPG/RANK in peripheral blood mononuclear cells (PBMCs) was examined. Twenty-nine women with post-menopausal osteoporosis were treated with estrogen (HRT) or raloxifene for 12 months. Bone mineral density (BMD) was measured at baseline and at 12 months at the spine and hip. Serum C-terminal telopeptide (CTX) and OPG were measured at baseline and at 1, 3, 6 and 12 months. PBMCs were isolated from 17 women and changes in RANKL, OPG and RANK mRNA were determined. The effects of estrogen or raloxifene in PBMCs in vitro were also assessed. BMD increased following treatment (lumbar spine % change mean [S.E.M.]: 4.3% [0.9], p<0.001). Serum CTX decreased (6 months: -43.7% [6.0], p<0.0001). Serum OPG declined gradually (12 months: -26.4% [4.4], p<0.001). RANKL, OPG and RANK gene expression decreased (6 months: RANKL 50.0% [24.8] p<0.001, OPG: 21.7% [28] p<0.001, RANK: 76.6% [10.2] p=0.015). Changes in OPG mRNA correlated with changes in BMD (r=-0.53, p=0.027) and CTX (r=0.7, p=0.0044). Down-regulation in RANKL, OPG, RANK mRNA and reduction in bone resorption was also seen in vitro. These results suggest that the expression of RANKL/OPG/RANK in PBMCs are responsive to the slowing in bone turnover/remodeling associated with treatment with estrogen or raloxifene. Further confirmatory studies are needed.  相似文献   

8.
Regulatory CD4(+)CD25(+) T cells are important in suppressing immune responses. The requirements for the maintenance of peripheral CD4(+)CD25(+) T cells remain incompletely understood. Receptor activator of NF-kappaB (RANK) and its ligand (RANKL; also known as CD254, OPGL and TRANCE) are key regulators of bone remodeling, mammary gland formation, lymph node development and T-cell/dendritic cell communication. Here we report that RANKL is expressed in keratinocytes of the inflamed skin. RANKL overexpression in keratinocytes resulted in functional alterations of epidermal dendritic cells and systemic increases of regulatory CD4(+)CD25(+) T cells. Thus, epidermal RANKL expression can change dendritic cell functions to maintain the number of peripheral CD4(+)CD25(+) regulatory T cells. Epidermal RANKL mediated ultraviolet-induced immunosuppression and overexpression of epidermal RANKL suppressed allergic contact hypersensitivity responses and the development of systemic autoimmunity. Therefore, environmental stimuli at the skin can rewire the local and systemic immune system by means of RANKL.  相似文献   

9.
The emergence of the molecular triad osteoprotegerin (OPG)/Receptor Activator of NF-kB (RANK)/RANK Ligand (RANKL) has helped elucidate a key signalling pathway between stromal cells and osteoclasts. The interaction between RANK and RANKL plays a critical role in promoting osteoclast differentiation and activation leading to bone resorption. OPG is a soluble decoy receptor for RANKL that blocks osteoclast formation by inhibiting RANKL binding to RANK. The OPG/RANK/RANKL system has been shown to be abnormally regulated in several malignant osteolytic pathologies such as multiple myeloma [MM, where enhanced RANKL expression (directly by tumour cells or indirectly by stromal bone cells or T-lymphocytes)] plays an important role in associated bone destruction. By contrast, production of its endogenous counteracting decoy receptor OPG is either inhibited or too low to compensate for the increase in RANKL production. Therefore, targeting the OPG/RANK/RANKL axis may offer a novel therapeutic approach to malignant osteolytic pathologies. In animal models, OPG or soluble RANK was shown both to control hypercalcaemia of malignancy and the establishment and progression of osteolytic metastases caused by various malignant tumours. To this day, only one phase I study has been performed using a recombinant OPG construct that suppressed bone resorption in patients with multiple myeloma or breast carcinoma with radiologically confirmed bone lesions. RANK-Fc also exhibits promising therapeutic effects, as revealed in animal models of prostate cancer and multiple myeloma. If the animal results translate to similar clinical benefits in humans, using RANK-Fc or OPG may yield novel and potent strategies for treating patients with established or imminent malignant bone diseases and where standard therapeutic regimens have failed.  相似文献   

10.
Receptor activator of nuclear factor-kappa B (RANK) and its ligand, RANKL play critical roles in bone re-modeling, immune function, vascular disease and mammary gland development. To study the interaction of RANK and RANKL, we have expressed both extracellular domain of RANK and ectodomain of RANKL using Escherichia coli expression system. RANK was expressed as an inclusion body first which properly refolded later, while RANKL was initially produced as a GST fusion protein, after which the GST was removed by enzyme digestion. Soluble RANK existed as a monomer while RANKL was seen as a trimer in solution, demonstrated by gel filtration chromatography and cross-linking experiment. The recombinant RANK and RANKL could bind to each other and the binding affinity of RANKL for RANK was measured with surface plasmon resonance technology and KD value is about 1.09 × 10−10 M.  相似文献   

11.
BackgroundTo this day, empirical data suggests that zinc has important roles in matrix synthesis, bone turnover, and mineralization and its beneficial effects on bone could be mediated through different mechanisms. The influence of zinc on bone turnover could be facilitated via regulating RANKL/RANK/OPG pathway in bone tissue. Therefore, the aim of the study was to conduct a review to investigate the possible effect of the zinc mediated bone remodeling via RANKL/RANK/OPG pathway.MethodsA comprehensive systematic search was performed in MEDLINE/PubMed, Cochrane Library, SCOPUS, and Google Scholar to explore the studies investigating the effect of zinc as a bone remodeling factor via RANKL/RANK/OPG pathway regulation. Subsequently, the details of the pathway and the impact of zinc supplements on RANKL/RANK/OPG pathway regulation were discussed.ResultsThe pathway could play an important role in bone remodeling and any imbalance between RANKL/RANK/OPG components could lead to extreme bone resorption. Although the outcomes of some studies are equivocal, it is evident that zinc possesses protective properties against bone loss by regulating the RANKL/RANK/OPG pathway. There are several experiments where zinc supplementation resulted in upregulation of OPG expression or decreases RANKL level. However, the results of some studies oppose this.ConclusionIt is likely that sufficient zinc intake will elicit positive effects on bone health by RANKL/RANK/OPG regulation. Although the outcomes of a few studies are equivocal, it seems that zinc can exert the protective properties against bone loss by suppressing osteoclastogenesis via downregulation of RANKL/RANK. Additionally, there are several experiments where zinc supplementation resulted in upregulation of OPG expression. However, the results of limited studies oppose this. Therefore, aside from the positive role zinc possesses in preserving bone mass, further effects of zinc in RANKL/RANK/OPG system requires further animal/human studies.  相似文献   

12.
Osteoprotegerin and inflammation   总被引:7,自引:0,他引:7  
RANK, RANKL, and OPG have well established regulatory effects on bone metabolism. RANK is expressed at very high levels on osteoclastic precursors and on mature osteoclasts, and is required for differentiation and activation of the osteoclast. The ligand, RANKL binds to its receptor RANK to induce bone resorption. RANKL is a transmembrane protein expressed in various cells type and particularly on osteoblast and activated T cells. RANKL can be cleaved and the soluble form is active. Osteoprotegerin decoy receptor (OPG), a member of the TNF receptor family expressed by osteoblasts, strongly inhibits bone resorption by binding with high affinity to its ligand RANKL, thereby preventing RANKL from engaging its receptor RANK. This system is regulated by the calciotropic hormones. Conversely, the effects of RANKL, RANK, and OPG on inflammatory processes, most notably on the bone resorption associated with inflammation, remain to be defined. The RANK system seems to play a major role in modulating the immune system. Activated T cells express RANKL messenger RNA, and knock-out mice for RANKL acquire severe immunological abnormalities and osteopetrosis. RANKL secretion by activated T cells can induce osteoclastogenesis. These mechanisms are enhanced by cytokines such as TNF-alpha, IL-1, and IL-17, which promote both inflammation and bone resorption. Conversely, this system is blocked by OPG, IL-4, and IL-10, which inhibit both inflammation and osteoclastogenesis. These data may explain part of the abnormal phenomena in diseases such as rheumatoid arthritis characterized by both inflammation and destruction. Activated T cells within the rheumatoid synovium express RANKL. Synovial cells are capable of differentiating to osteoclast-like cells under some conditions, including culturing with M-CSF and RANKL. This suggests that the bone erosion seen in rheumatoid arthritis may result from RANKL/RANK system activation by activated T cells. This opens up the possibility that OPG may have therapeutic effects mediated by blockade of the RANKL/RANK system.  相似文献   

13.
Functions of RANKL/RANK/OPG in bone modeling and remodeling   总被引:1,自引:0,他引:1  
The discovery of the RANKL/RANK/OPG system in the mid 1990s for the regulation of bone resorption has led to major advances in our understanding of how bone modeling and remodeling are regulated. It had been known for many years before this discovery that osteoblastic stromal cells regulated osteoclast formation, but it had not been anticipated that they would do this through expression of members of the TNF superfamily: receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG), or that these cytokines and signaling through receptor activator of NF-κB (RANK) would have extensive functions beyond regulation of bone remodeling. RANKL/RANK signaling regulates osteoclast formation, activation and survival in normal bone modeling and remodeling and in a variety of pathologic conditions characterized by increased bone turnover. OPG protects bone from excessive resorption by binding to RANKL and preventing it from binding to RANK. Thus, the relative concentration of RANKL and OPG in bone is a major determinant of bone mass and strength. Here, we review our current understanding of the role of the RANKL/RANK/OPG system in bone modeling and remodeling.  相似文献   

14.
RANKL (receptor-activator of NF-κB ligand, TNFSF11) is a member of the TNF superfamily that regulates bone remodelling and the development of the thymus, lymph nodes and mammary glands. While RANKL and its membrane bound receptor RANK (TNFRSF11A) are expressed in the adult central nervous system and have been implicated in thermoregulation, the potential function of RANK signalling in the developing nervous system remains unexplored. Here, we show that RANK is expressed by sympathetic and sensory neurons of the developing mouse peripheral nervous system and that activating RANK signalling in these neurons during perinatal development by either treating cultured neurons with soluble RANKL or overexpressing RANK in the neurons inhibited neurotrophin-promoted neurite growth without affecting neurotrophin-promoted neuronal survival. RANKL is expressed in tissues innervated by these neurons, and studies in compartment cultures demonstrated that RANKL is capable of acting directly on neurites to inhibit growth locally. Enhancing RANK signalling in cultured neurons resulted in NF-κB activation and phosphorylation of the p65 NF-κB subunit on serine 536. Transfecting neurons with a series of mutated signalling proteins showed that NF-κB activation and p65 phosphorylation occurred by an IKKβ-dependent mechanism and that blockade of this signalling pathway prevented neurite growth inhibition by RANKL. These findings reveal that RANKL is a novel negative regulator of neurite growth from developing PNS neurons and that it exerts its effects by IKKβ-dependent activation of NF-κB.  相似文献   

15.
OPG/RANKL/RANK系统与骨破坏性疾病   总被引:15,自引:0,他引:15  
近年来发现的OPG/RANKL/RANK系统在破骨细胞生成中起着至关重要的作用,是骨骼生理研究领域的重大进展。成骨细胞、骨髓基质细胞、激活的T淋巴细胞表达RANKL,与破骨细胞前体细胞或成熟破骨细胞表面上的RANK结合后,促进破骨细胞的分化及骨吸收活性。成骨细胞及骨髓基质细胞分泌表达OPG可与RANKL竞争性结合,从而阻断RANKL与RANK之间的相互作用。体内多种激素或因子通过影响骨髓微环境内的OPG/RANKL比率来调节骨代谢。此外,乳腺上皮细胞表达有RANK,孕期在性激素的诱导下可表达RANKL,OPG/RANKL/RANK系统在孕期乳腺发育以及母体向胎儿的钙转运过程中发挥重要作用。阻断RANKL/RANK通路有望给骨质疏松、类风湿关节炎及癌症骨转移等骨破坏性疾病的治疗开辟新的途径。进一步研究应了解OPG/RANKL/RANK系统与其它信号传导途径的关系,重视骨骼、免疫及内分泌系统之间的相互作用。目前,开发与OPG功能相似或促进其表达的合成药物有可能成为具有良好经济效益和社会效益的产业。  相似文献   

16.
Receptor activator of NF-κB (RANK) and RANK ligand (RANKL) are known to play an important role in the development and progression of breast cancer. However, the mechanisms by which stimuli regulate the expression of RANK and RANKL in breast cancer cells are largely unknown. In this study, we show that hypoxia, a common feature of malignant tumors, can enhance the expression of RANK and RANKL mRNA and protein in MDA-MB-231 and MCF-7 breast cancer cells. In addition, we found that hypoxia induced hypoxia-inducible factor-1 alpha (HIF-1α) and phosphorylation of Akt, resulting in upregulation of RANK and RANKL expression; HIF-1α-targeted siRNA and PI3K-Akt inhibitor abrogated this upregulation in MDA-MB-231 cells. Furthermore, we also observed that hypoxia accelerated RANKL-mediated cell migration, which was inhibited following HIF-1α knockdown and PI3K-Akt inhibition. Thus, we provide evidence that hypoxia upregulates RANK and RANKL expression and increases RANKL-induced cell migration via the PI3K/Akt-HIF-1α pathway.  相似文献   

17.
18.
RANKL-RANK signaling regulates numerous physiologic processes such as bone remodeling, lymph node organogenesis, central thermoregulation, and formation of a lactating mammary gland in pregnancy. Recently, a receptor activator of NF-κB ligand (RANKL)-blocking Ab has been approved for human use in potentially millions of osteoporosis and cancer patients. However, germline deficiencies in RANKL or receptor activator of NF-κB (RANK) also lead to strong B cell defects in mice and human patients, suggesting that RANKL-RANK inhibition could interfere with B cell physiology and thereby trigger immunologic side-effects. To address this key question--that is, whether RANKL-RANK signaling affects B cell physiology directly or the observed defects are secondary because of the severe osteopetrosis--we generated B cell-specific RANK knockout mice. We show that B cells deficient for RANK undergo normal development and do not show any obvious defects in Ab secretion, class switch recombination, or somatic hypermutation. Our data indicate that ablation of the RANKL-RANK pathway has no direct adverse effect on B cell physiology.  相似文献   

19.
The past decade has seen an explosion in the field of bone biology. The area of bone biology over this period of time has been marked by a number of key discoveries that have opened up entirely new areas for investigation. The recent identification of the receptor activator of nuclear factor κB ligand (RANKL), its cognate receptor RANK, and its decoy receptor osteoprotegerin (OPG) has led to a new molecular perspective on osteoclast biology and bone homeostasis. Specifically, the interaction between RANKL and RANK has been shown to be required for osteoclast differentiation. The third protagonist, OPG, acts as a soluble receptor antagonist for RANKL that prevents it from binding to and activating RANK. Any dysregulation of their respective expression leads to pathological conditions such as bone tumor-associated osteolysis, immune disease, or cardiovascular pathology. In this context, the OPG/RANK/RANKL triad opens novel therapeutic areas in diseases characterized by excessive bone resorption. The present article is an update and extension of an earlier review published by Kwan Tat et al. [Kwan Tat S, Padrines M, Théoleyre S, Heymann D, Fortun Y. IL-6, RANKL, TNF-/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev 2004;15:49–60].  相似文献   

20.
《Biomarkers》2013,18(2):121-125
Abstract

Introduction: The impact on the survival of bone metastases (BM) in patients with neuroendocrine tumor (NET) is a matter of debate. BM have a key role in causing symptoms and in decreasing patients’ quality of life. Although the mechanisms of the development of BM are not completely clear, it is now well understood that the Receptor Activator of Nuclear factor Kappa-B-/Ligand (RANK/RANKL)/osteoprotegerin (OPG) pathway plays a relevant role.

Aim: To characterize the RANK/RANKL/OPG pathway in patients affected with NET.

Patients and methods: Two cohorts of 15 patients each were enrolled in the study; one cohort was affected with NET without BM and the second cohort was affected with NET with BM. The serum RANK/RANKL/OPG pathway was assessed in both the groups.

Results: Serum OPG levels and RANKL/OPG ratio were lower and higher, respectively, in NET patients harboring BM than in those without BM. During the ROC analysis, a cut-off value of 1071?pg/ml for OPG and 0.62 for RANKL/OPG ratio were able to significantly distinguish between the two groups.

Conclusions: This study indicates that RANK/RANKL/OPG pathway is imbalanced in patients with NET harboring BM. Specific alterations of this pathway could predict an early development of BM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号