首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stem cells hold indefinite self-renewable capability that can be differentiated into all desired cell types.Based on their plasticity potential,they are divided into totipotent(morula stage cells),pluripotent(embryonic stem cells),multipotent(hematopoietic stem cells,multipotent adult progenitor stem cells,and mesenchymal stem cells[MSCs]),and unipotent(progenitor cells that differentiate into a single lineage)cells.Though bone marrow is the primary source of multipotent stem cells in adults,other tissues such as adipose tissues,placenta,amniotic fluid,umbilical cord blood,periodontal ligament,and dental pulp also harbor stem cells that can be used for regenerative therapy.In addition,induced pluripotent stem cells also exhibit fundamental properties of self-renewal and differentiation into specialized cells,and thus could be another source for regenerative medicine.Several diseases including neurodegenerative diseases,cardiovascular diseases,autoimmune diseases,virus infection(also coronavirus disease 2019)have limited success with conventional medicine,and stem cell transplantation is assumed to be the best therapy to treat these disorders.Importantly,MSCs,are by far the best for regenerative medicine due to their limited immune modulation and adequate tissue repair.Moreover,MSCs have the potential to migrate towards the damaged area,which is regulated by various factors and signaling processes.Recent studies have shown that extracellular calcium(Ca2+)promotes the proliferation of MSCs,and thus can assist in transplantation therapy.Ca2+signaling is a highly adaptable intracellular signal that contains several components such as cell-surface receptors,Ca2+channels/pumps/exchangers,Ca2+buffers,and Ca2+sensors,which together are essential for the appropriate functioning of stem cells and thus modulate their proliferative and regenerative capacity,which will be discussed in this review.  相似文献   

2.
Mesenchymal stem cells (MSCs) are a heterogeneous population of stem/progenitor cells with pluripotent capacity to differentiate into mesodermal and non‐mesodermal cell lineages, including osteocytes, adipocytes, chondrocytes, myocytes, cardiomyocytes, fibroblasts, myofibroblasts, epithelial cells, and neurons. MSCs reside primarily in the bone marrow, but also exist in other sites such as adipose tissue, peripheral blood, cord blood, liver, and fetal tissues. When stimulated by specific signals, these cells can be released from their niche in the bone marrow into circulation and recruited to the target tissues where they undergo in situ differentiation and contribute to tissue regeneration and homeostasis. Several characteristics of MSCs, such as the potential to differentiate into multiple lineages and the ability to be expanded ex vivo while retaining their original lineage differentiation commitment, make these cells very interesting targets for potential therapeutic use in regenerative medicine and tissue engineering. The feasibility for transplantation of primary or engineered MSCs as cell‐based therapy has been demonstrated. In this review, we summarize the current knowledge on the signals that control trafficking and differentiation of MSCs. J. Cell. Biochem. 106: 984–991, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
4.
非亲缘脐带血移植是治疗造血系统疾病的重要移植方式之一,但脐带血移植面临的最大挑战是造血干细胞(HSCs)数量不足,特别是成人患者受到脐带血干细胞数量的限制,导致造血及免疫恢复延迟,非复发死亡率升高。体外扩增脐带血HSCs(UCB-HSCs)是解决该问题的途径之一。研究发现可以通过模拟骨髓造血龛(niche)这一生态位使HSCs在体外进行自我更新增殖,而间充质干细胞(MSCs)正是造血龛的重要的组成细胞之一。本文将探讨MSCs在UCB-HSCs体外扩增中的应用。重点以MSCs促造血的特点、机制,促进脐带血干细胞增殖的各种策略以及其临床应用和前景做一综述。  相似文献   

5.
Mesenchymal stem cells (MSCs) can be derived from adult bone marrow, fat and several foetal tissues. In vitro , MSCs have the capacity to differentiate into multiple mesodermal and non-mesodermal cell lineages. Besides, MSCs possess immunosuppressive effects by modulating the immune function of the major cell populations involved in alloantigen recognition and elimination. The intriguing biology of MSCs makes them strong candidates for cell-based therapy against various human diseases. Type 1 diabetes is caused by a cell-mediated autoimmune destruction of pancreatic β-cells. While insulin replacement remains the cornerstone treatment for type 1 diabetes, the transplantation of pancreatic islets of Langerhans provides a cure for this disorder. And yet, islet transplantation is limited by the lack of donor pancreas. Generation of insulin-producing cells (IPCs) from MSCs represents an attractive alternative. On the one hand, MSCs from pancreas, bone marrow, adipose tissue, umbilical cord blood and cord tissue have the potential to differentiate into IPCs by genetic modification and/or defined culture conditions In vitro . On the other hand, MSCs are able to serve as a cellular vehicle for the expression of human insulin gene. Moreover, protein transduction technology could offer a novel approach for generating IPCs from stem cells including MSCs. In this review, we first summarize the current knowledge on the biological characterization of MSCs. Next, we consider MSCs as surrogate β-cell source for islet transplantation, and present some basic requirements for these replacement cells. Finally, MSCs-mediated therapeutic neovascularization in type 1 diabetes is discussed.  相似文献   

6.
In addition to long-term self-renewal capability, human mesenchymal stem cells (MSCs) possess versatile differentiation potential ranging from mesenchyme-related multipotency to neuroectodermal and endodermal competency. Of particular concern is hepatogenic potential that can be used for liver-directed stem cell therapy and transplantation. In this study, we have investigated whether human umbilical cord blood (UCB)-derived MSCs are also able to differentiate into hepatocyte-like cells. MSCs isolated from UCB were cultured under the pro-hepatogenic condition similar to that for bone marrow (BM)-derived MSCs. Expression of a variety of hepatic lineage markers was analyzed by flow cytometry, RT-PCR, Western blot, and immunofluorescence. The functionality of differentiated cells was assessed by their ability to incorporate DiI-acetylated low-density lipoprotein (DiI-Ac-LDL). As the cells were morphologically transformed into hepatocyte-like cells, they expressed Thy-1, c-Kit, and Flt-3 at the cell surface, as well as albumin, alpha-fetoprotein, and cytokeratin-18 and 19 in the interior. Moreover, about a half of the cells were found to acquire the capability to transport DiI-Ac-LDL. Based on these observations, and taking into account immense advantages of UCB over other stem cell sources, we conclude that UCB-derived MSCs retain hepatogenic potential suitable for cell therapy and transplantation against intractable liver diseases.  相似文献   

7.
Stem cell niches provide the micro-environment for the development of stem cells. Under our culturing regimen, a kind of osteoclast-centralized structure supports the proliferation of MSCs, derived from human cord blood, once they reside on osteoclasts. MSCs in this structure expressed Oct4 which is a marker of embryonic stem cells. Floating daughter cells of MSCs colony showed abilities to differentiate into osteocyte, adipocyte, and neuronal progenitor cells. Compared with the easy senescence of MSCs without this niche-like structure in vitro, these results suggested that osteoclasts might play an important role the development and maintenance of Umbilical cord blood (UCB)-derived MSCs and might provide a means to expand UCB-MSCs in vitro, more easily, through a stem cell niche-like structure.  相似文献   

8.
It is known that umbilical cord blood (UCB) is a rich source of stem cells with practical and ethical advantages. Three important types of stem cells which can be harvested from umbilical cord blood and used in disease treatment are hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs). Since these stem cells have shown enormous potential in regenerative medicine, numerous umbilical cord blood banks have been established. In this study, we examined the ability of banked UCB collected to produce three types of stem cells from the same samples with characteristics of HSCs, MSCs and EPCs. We were able to obtain homogeneous plastic rapidly-adherent cells (with characteristics of MSCs), slowly-adherent (with characteristics of EPCs) and non-adherent cells (with characteristics of HSCs) from the mononuclear cell fractions of cryopreserved UCB. Using a protocol of 48?h supernatant transferring, we successfully isolated MSCs which expressed CD13, CD44 and CD90 while CD34, CD45 and CD133 negative, had typical fibroblast-like shape, and was able to differentiate into adipocytes; EPCs which were CD34, and CD90 positive, CD13, CD44, CD45 and CD133 negative, adherent with cobble-like shape; HSCs which formed colonies when cultured in MethoCult medium.  相似文献   

9.
Progenitor stem cells have been identified, isolated and characterized in numerous tissues and organs. However, their therapeutic potential and the use of these stem cells remain elusive except for a few progenitor cells from bone marrow, umbilical cord blood, eyes and dental pulp. The use of bone marrow-derived hematopoietic stem cells (HSC) or mesenchymal stem cells (MSCs) is restricted due to their extreme invasive procedures, low differentiation potential with age and rejection. Thus, we need a clinical grade alternative to progenitor stem cells with a high potential to differentiate, na?ve and is relatively easy in in vitro propagation. In this review, we summarize cell populations of adherent and floating spheres derived from different origins of skin, or correctly foreskin, by enzymatic digestion compared with established MSCs. The morphology, phenotype, differentiation capability and immunosuppressive property of the adherent cell populations are comparable with MSCs. Serum-free cultured floating spheres have limited mesodermal but higher neurogenic differentation potential, analogous to neural crest stem cells. Both the populations confirmed their plethora potential in in vitro. Together, it may be noted that the skin-derived adherent cell populations and floating cells can be good alternative sources of progenitor cells especially in cosmetic, plastic and sports regenerative medicine.  相似文献   

10.
《Tissue & cell》2016,48(6):653-658
Cord tissue fills the umbilical cord around the blood vessels and contains types of stem cells (mesenchymal stem cells or MSCs) that are not generally found in cord blood. MSCs are the stem cells that give rise to many of the “support tissues” in the body, including bone, cartilage, fat and muscle. Umbilical Cord Tissue cells (UCTs) possessing the capacity to differentiate into various cell types such as osteoblasts, chondrocytes and adipocytes have been previously isolated from different species including human, canine, murine, avian species etc. The present study documents the existence of similar multipotential stem cells in caprine UCTs having similar growth and morphological characteristics. The cells were isolated from caprine umbilical cord and cultivated in DMEM (low glucose) supplemented with 15% FBS, L-glutamine and antibiotics. Primary culture achieved confluence in 5–7 days having spindle shaped morphology. The cells were morphologically homogeneous, showed robust proliferation ability with a population doubled time of 92.07 h as well as normal karyotype. In vitro self-renewal capacity was demonstrated by colony-forming unit assay (CFU). The cells expressed MSC specific markers and showed multi-differentiation capability into adipogenic and osteogeneic. The results indicated that caprine UCTs (cUCTs) were isolated and characterized from umbilical cord tissue which can be used for tissue regeneration.  相似文献   

11.
Liver diseases caused by various factors have become a significant threat to public health worldwide. Liver transplantation has been considered as the only effective treatment for end-stage liver diseases; however, it is limited by the shortage of donor organs, postoperative complications, long-term immunosuppression, and high cost of treatment. Thus, it is not available for all patients. Recently, mesenchymal stem cells (MSCs) transplantation has been extensively explored for repairing hepatic injury in various liver diseases. MSCs are multipotent adult progenitor cells originated from the embryonic mesoderm, and can be found in mesenchymal tissues including the bone marrow, umbilical cord blood, adipose tissue, liver, lung, and others. Although the precise mechanisms of MSC transplantation remain mysterious, MSCs have been demonstrated to be able to prevent the progression of liver injury and improve liver function. MSCs can self-renew by dividing, migrating to injury sites and differentiating into multiple cell types including hepatocytes. Additionally, MSCs have immune-modulatory properties and release paracrine soluble factors. Indeed, the safety and effectiveness of MSC therapy for liver diseases have been demonstrated in animals. However, pre-clinical and clinical trials are largely required to confirm its safety and efficacy before large scale clinical application. In this review, we will explore the molecular mechanisms underlying therapeutic effects of MSCs on liver diseases. We also summarize clinical advances in MSC-based therapies.  相似文献   

12.
脐带血来源干细胞神经分化的研究进展   总被引:3,自引:0,他引:3  
中枢神经系统损伤后的自身修复能力有限,因而研究者致力于寻找一种合适的细胞进行移植以代替受损的神经细胞修复神经损伤。近年来的研究表明,脐带血干细胞能够在体外诱导条件下向神经样细胞分化,并在动物体内实验中促进神经损伤的恢复,有可能作为一种有效的细胞资源,应用于人类中枢神经系统疾病的细胞替代治疗以及神经保护与支持。  相似文献   

13.
Mesenchymal stem cells (MSCs) are multipotent cells found in a variety of tissues in the body, including but not limited to bone marrow, adipose tissue, umbilical cord, and umbilical cord blood. Given their immunomodulatory effect and ability to be readily isolated from several tissues, they have great potential to be used as a therapeutic agent in a variety of immune-mediated disorders. Atopic dermatitis (AD) is a persistent and relapsing immune skin condition that has recently become more common in several species such as humans, canines, equines, and felines. The use of MSCs to treat AD has piqued the great interest of researchers in recent years. In this article, we review the recent understanding of AD pathology and advances in preclinical and clinical studies of MSCs, MSCs-derived conditional media and exosomes as therapeutic tools to treat AD.  相似文献   

14.
Evidence has emerged that mesenchymal stem cells (MSCs) represent a promising cell population for supporting new clinical cellular therapies. Currently, bone marrow represents the main source of MSCs, but their differentiation capacity declines with age. We have identified possible novel multilineage mesenchymal cells from human placenta. In addition to their multilineage differentiation, they have a direct immunosuppressive effect on proliferation of T lymphocytes from human adult peripheral blood (PB) and umbilical cord blood (UCB) in vitro. This immunoregulatory feature strongly implies that they have a potential application in allograft transplantation. Since placenta and UCB can be obtained from the same donor, placenta is an attractive source of MSCs for co-transplantation in conjunction with UCB-derived hematopoietic stem cells to reduce the potential of graft-versus-host disease in recipients. However, the way that they modulate the immune system is unclear. In this investigation, we have addressed the effects of human placental MSCs on various subtypes of UCB-derived and PB-derived T lymphocytes. This study was supported by a grant from the National Natural Science Foundation (no. 30571949), by the Beijing Nova Star program, by the Beijing Elitist Fund (20051D0301029), and by the Beijing Obstetrics and Gynecology Hospital.  相似文献   

15.
Science and medicine place a lot of hope in the development of stem cell research and regenerative medicine. This review will define the concept of regenerative medicine and focus on an abundant stem cell source - neonatal tissues such as the umbilical cord. Umbilical cord blood has been used clinically for over 20 years as a cell source for haematopoietic stem cell transplantation. Beyond this, cord blood and umbilical cord-derived stem cells have demonstrated potential for pluripotent lineage differentiation (liver, pancreatic, neural tissues and more) in vitro and in vivo. This promising research has opened up a new era for utilization of neonatal stem cells, now used beyond haematology in clinical trials for autoimmune disorders, cerebral palsy or type I diabetes.  相似文献   

16.
脐血干细胞是一种具有多分化潜能的原始细胞,具备自我更新和增殖的能力,并能在特定因素的影响或诱导下,向多种细胞或组织分化。脐血来源的间充质干细胞不但可以分化为骨、脂肪和软骨,还可以转变成带有神经、肝脏及骨骼肌特异标记的细胞,并且具有应用到组织损伤修复、基因治疗载体和造血干细胞共移植等方面的潜力。旨在对于脐血干细胞在一定条件下分化为多种细胞研究进展进行综述。  相似文献   

17.
Adult stem cells have been intensively studied for their potential use in cell therapies for neurodegenerative diseases, ischemia and traumatic injuries. One of the most promising cell sources for autologous cell transplantation is bone marrow, containing a heterogenous cell population that can be roughly divided into hematopoietic stem and progenitor cells and mesenchymal stem cells (MSCs). MSCs are multipotent progenitor cells that, in the case of severe tissue ischemia or damage, can be attracted to the lesion site, where they can secrete bioactive molecules, either naturally or through genetic engineering. They can also serve as vehicles for delivering therapeutic agents. Mobilized from the marrow, sorted or expanded in culture, MSCs can be delivered to the damaged site by direct or systemic application. In addition, MSCs can be labeled with superparamagnetic nanoparticles that allow in vivo cell imaging. Magnetic resonance imaging (MRI) is thus a suitable method for in vivo cell tracking of transplanted cells in the host organism. This review will focus on cell labeling for MRI and the use of MSCs in experimental and clinical studies for the treatment of brain and spinal cord injuries.  相似文献   

18.
Stem and progenitor cells are present in cord blood at a high frequency making these cells a major target population for experimental and clinical studies. Over the past decade there has been considerable developments in cord blood research and transplantation but despite the rapid progress many problems remain. The initial hope that cord blood would be an alternative source of haemopoietic cells for transplantation has been tempered by the fact that there are insufficient cells in most cord blood collections to engraft an adult of average weight. In attempts to increase the cell number, a plethora of techniques for ex-vivo expansion have been developed.These techniques have also proved useful for gene therapy. As cord blood cells possess unique properties this allows them to be utilised as suitable vehicles for gene therapy and long-term engraftment of transduced cells has been achieved. Current work examining the nature of the stem cells present in this haematological source indicates that cord blood contains not only haemopoietic stem cells but also primitive non-haemopoietic cells with high proliferative and developmental potential. As attention focuses on stem cell biology and the controversies surrounding the potential use of embryonic stem cells in treatment of disease, the properties of stem cells from other sources including cord blood are being re-appraised. The purpose of this article is to review some of the current areas of work and highlight biological problems associated with the use of cord blood cells. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
脐血干细胞是一类具有多向分化潜能的原始祖细胞,具备自我更新和增殖的能力,在特定条件诱导下可以分化为不同细胞,逐渐作为临床组织工程的来源细胞。近年来随着对脐血干细胞的不断研究,发现其在创面修复中具有明显的优势,成为创面临床治疗的一条新途径。本文从脐血干细胞的生物学特性、采集与冻存、体外扩增等方面对创面修复的研究进行综述。  相似文献   

20.
罗瞳  李利平 《生物磁学》2011,(5):986-988
脐血干细胞是一类具有多向分化潜能的原始祖细胞,具备自我更新和增殖的能力,在特定条件诱导下可以分化为不同细胞,逐渐作为临床组织工程的来源细胞。近年来随着对脐血干细胞的不断研究,发现其在创面修复中具有明显的优势,成为创面临床治疗的一条新途径。本文从脐血干细胞的生物学特性、采集与冻存、体外扩增等方面对创面修复的研究进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号