首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The formation of embryoid bodies (EBs) is the principal step in the differentiation of embryonic stem (ES) cells. In this study, the morphological characteristics and gene expression patterns of EBs related to the sequential stages of embryonic development were well defined in four distinct developmental groups over 112 days of culture: early-stage EBs groups (1–7 days of differentiation), mid-stage EBs groups (9–15 days of differentiation), maturing EBs groups (17–45 days of differentiation) and matured EBs groups (50 days of differentiation). We first determined definite histological location of apoptosis within EBs and the sequential expression of molecular markers representing stem cells (Oct4, SSEA-1, Sox-2 and AKP), germ cells (Fragilis, Dazl, c-kit, StellaR, Mvh and Stra8), ectoderm (Neurod, Nestin and Neurofilament), mesoderm (Gata-1, Flk-1 and Hbb) and endoderm (AFP and Transthyretin). Our results revealed that developing EBs possess either pluripotent stem cell or germ cell states and that three-dimensional aggregates of EBs initiate mES cell differentiation during prolonged culture in vitro. Therefore, we suggest that this EB system to some extent recapitulates the early developmental processes occurring in vivo.  相似文献   

3.
Mesenchymal stem cells (MSCs) have received significant attention in recent years due to their large potential for cell therapy. Indeed, they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases. MSCs can be extracted from multiple tissues of the human body. However, several factors may restrict their use for clinical applications: the requirement of invasive procedures for their isolation, their limited numbers, and their heterogeneity according to the tissue of origin or donor. In addition, MSCs often present early signs of replicative senescence limiting their expansion in vitro, and their therapeutic capacity in vivo. Due to the clinical potential of MSCs, a considerable number of methods to differentiate induced pluripotent stem cells (iPSCs) into MSCs have emerged. iPSCs represent a new reliable, unlimited source to generate MSCs (MSCs derived from iPSC, iMSCs) from homogeneous and well-characterized cell lines, which would relieve many of the above mentioned technical and biological limitations. Additionally, the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells. In this review, we analyze the main current protocols used to differentiate human iPSCs into MSCs, which we classify into five different categories: MSC Switch, Embryoid Body Formation, Specific Differentiation, Pathway Inhibitor, and Platelet Lysate. We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization. Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added. The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands.  相似文献   

4.
We have successfully developed both spontaneous and inductive cardiomyocyte differentiation of iPS cells reprogrammed from human foreskin fibroblasts. The reprogrammed iPS cells morphologically resemble human cardiomyocytes which can beat. RT-PCR and immunostaining show that cardiac markers are expressed that are comparable to the differentiation pattern of authentic human embryonic stem cells, indicating the existence of both immature and mature differentiated cardiomyocytes. 5-Azacytidine greatly enhanced the efficiency of cardiomyocyte differentiation, whereas dimethylsulfoxide had no effect. Low serum and bone morphogenetic protein-2 marginally improved differentiation efficiency. iPS cell-derived cardiomyocytes changed their beat frequency in response to cardiac drugs, which included ion channel blockers and α/β adrenergic stimulators. Derived cardiomyocytes look promising as an in vitro system for potential drug screen and/or toxicity, making this system closer to practical use in the near future.  相似文献   

5.
Stem cells possess the ability to self-renew and differentiate into other cell types. In vivo, stem cells reside in their own anatomic niches in a defined physiological environment, from which they are released to differentiate into a required cell type when deemed appropriate. While a resident within the niche, the stem cell receives signals that in turn maintain the cell in a pluripotent state. In addition, the niche also provides nourishment to the cell. Physically, the niche also serves to anchor the cell via various ECM components and cell-adhesion molecules. Therefore, in vitro models that replicate the in vivo niche will lead to a better understanding of stem cell fate and turnover. In turn, this will help inform attempts to culture stem cells in vitro on artificial niche-like substrates. In this review, we have highlighted recent studies describing artificial niche-like substrates used to culture embryonic and induced pluripotent stem cells in vitro.  相似文献   

6.
The capability of human pluripotent stem cell(hPSC) lines to propagate indefinitely and differentiate into derivatives of three embryonic germ layers makes these cells be powerful tools for basic scientific research and promising agents for translational medicine. However, variations in differentiation tendency and efficiency as well as pluripotency maintenance necessitate the selection of hPSC lines for the intended applications to save time and cost. To screen the qualified cell lines and exclude problematic cell lines, their pluripotency must be confirmed initially by traditional methods such as teratoma formation or by highthroughput gene expression profiling assay. Additionally, their differentiation potential, particularly the lineage-specific differentiation propensities of hPSC lines, should be predicted in an early stage. As a complement to the teratoma assay, RNA sequencing data provide a quantitative estimate of the differentiation ability of hPSCs in vivo. Moreover, multiple scorecards have been developed based on selected gene sets for predicting the differentiation potential into three germ layers or the desired cell type many days before terminal differentiation.For clinical application of hPSCs, the malignant potential of the cells must also be evaluated. A combination of histologic examination of teratoma with quantitation of gene expression data derived from teratoma tissue provides safety-related predictive information by detecting immature teratomas, malignancy marker expression, and other parameters. Although various prediction methods are available, distinct limitations remain such as the discordance of results between different assays and requirement of a long time and high labor and cost,restricting their wide applications in routine studies. Therefore, simpler and more rapid detection assays with high specificity and sensitivity that can be used to monitor the status of hPSCs at any time and fewer targeted markers that are more specific for a given desired cell type are urgently needed.  相似文献   

7.
Induced pluripotent stem cells (iPSCs) were first generated from mouse embryonic fibroblasts in the year 2006. These cells resemble the typical morphology of embryonic stem cells, express pluripotency markers, and are able to transmit through germlines. To date, iPSCs of many species have been generated, whereas generation of bat iPSCs (biPSCs) has not been reported. To facilitate in-depth study of bats at the molecular and cellular levels, we describe the successful derivation of biPSCs with a piggyBac (PB) vector that contains eight reprogramming factors Oct4, Sox2, Klf4, Nanog, cMyc, Lin28, Nr5a2, and miR302/367. These biPSCs were cultured in media containing leukemia inhibitory factor and three small molecule inhibitors (CHIR99021, PD0325901, and A8301). They retained normal karyotype, displayed alkaline phosphatase activity, and expressed pluripotency markers Oct4, Sox2, Nanog, TBX3, and TRA-1-60. They could differentiate in vitro to form embryoid bodies and in vivo to form teratomas that contained tissue cells of all three germ layers. Generation of biPSCs will facilitate future studies on the mechanisms of antiviral immunity and longevity of bats at the cellular level.  相似文献   

8.
Genetically engineered stem cells aid in dissecting basic cell function and are valuable tools for drug discovery, in vivo cell tracking, and gene therapy. Gene transfer into pluripotent stem cells has been a challenge due to their intrinsic feature of growing in clusters and hence not amenable to common gene delivery methods. Several advances have been made in the rapid assembly of DNA elements, optimization of culture conditions, and DNA delivery methods. This has lead to the development of viral and non-viral methods for transient or stable modification of cells, albeit with varying efficiencies. Most methods require selection and clonal expansion that demand prolonged culture and are not suited for cells with limited proliferative potential.  相似文献   

9.
Mesenchymal stem cells(MSCs)have the potential for use in cell-based regenerative therapies.Currently,hundreds of clinical trials are using MSCs for the treatment of various diseases.However,MSCs are low in number in adult tissues;they show heterogeneity depending upon the cell source and exhibit limited proliferative potential and early senescence in in vitro cultures.These factors negatively impact the regenerative potential of MSCs and therefore restrict their use for clinical applications.As a result,novel methods to generate induced MSCs(iMSCs)from induced pluripotent stem cells have been explored.The development and optimization of protocols for generation of iMSCs from induced pluripotent stem cells is necessary to evaluate their regenerative potential in vivo and in vitro.In addition,it is important to compare iMSCs with primary MSCs(isolated from adult tissues)in terms of their safety and efficacy.Careful investigation of the properties of iMSCs in vitro and their long term behavior in animals is important for their translation from bench to bedside.  相似文献   

10.
Reprograming somatic cells using exogenetic gene expression represents a groundbreaking step in regenerative medicine. Induced pluripotent stem cells(i PSCs) are expected to yield novel therapies with the potential to solve many issues involving incurable diseases. In particular, applying i PSCs clinically holds the promise of addressing the problems of immune rejection and ethics that have hampered the clinical applications of embryonic stem cells. However, as i PSC research has progressed, new problems have emerged that need to be solved before the routine clinical application of i PSCs can become established. In this review, we discuss the current technologies and future problems of human i PSC generation methods for clinical use.  相似文献   

11.
Embryonic stem (ES) cells are omnipotent; they can differentiate into every cell type of the body. The development of culture conditions that allow their differentiation has made it conceivable to produce large numbers of cells with lineage-specific characteristics in vitro. Here, we describe a method by which murine ES cells can be differentiated into cells with characteristics of epidermal keratinocytes. Keratinocyte-like cells were isolated from embryoid bodies and grown in culture. Potential applications of this method are the in vitro differentiation of cells of interest from ES cells of mice with lethal phenotypes during embryonic development and the production of genetically modified epidermal keratinocytes that could be used as temporary wound dressing or as carriers of genes of interest in gene therapeutic treatments.  相似文献   

12.
Intercellular communication via gap junctions allows cells within multicellular organisms to share small molecules. The effect of such interactions has been elucidated using mouse gene knockout strategies. Although several mutations in human gap junction-encoding connexin (Cx) have been described, Cx mutants in mice do not always recapitulate the human disease. Among the 20 mouse Cxs, Cx26, Cx43, and Cx45 play roles in early cardiac or placental development, and disruption of the genes results in lethality that hampers further analyses. Embryonic stem cells (ESCs) that lack Cx43 or Cx45 have made analysis feasible in both in vitro differentiated cell cultures and in vivo chimeric tissues. The success of mouse ESCs studies is leading to the use of induced pluripotent stem cells to learn more about the pathogenesis of human Cx diseases. This review summarizes the current status of mouse Cx disruption models and ESC differentiation studies, and discusses their implication for understanding human Cx diseases.  相似文献   

13.
Human pluripotent stem cells (hPSCs) have the distinct advantage of being able to differentiate into cells of all three germ layers. Target cells or tissues derived from hPSCs have many uses such as drug screening, disease modeling, and transplantation therapy. There are currently a wide variety of differentiation methods available. However, most of the existing differentiation methods are unreliable, with uneven differentiation efficiency and poor reproducibility. At the same time, it is difficult to choose the optimal method when faced with so many differentiation schemes, and it is time-consuming and costly to explore a new differentiation approach. Thus, it is critical to design a robust and efficient method of differentiation. In this review article, we summarize a comprehensive approach in which hPSCs are differentiated into target cells or organoids including brain, liver, blood, melanocytes, and mesenchymal cells. This was accomplished by employing an embryoid body-based three-dimensional (3D) suspension culture system with multiple cells co-cultured. The method has high stable differentiation efficiency compared to the conventional 2D culture and can meet the requirements of clinical application. Additionally, ex vivo co-culture models might be able to constitute organoids that are highly similar or mimic human organs for potential organ transplantation in the future.  相似文献   

14.
Embryonic stem (ES) cells, derived from the inner cell mass of blastocyst can differentiate into multiple cell lineages. In this study, we examined the possible involvement of Ras in ES cell differentiation. We found that Ras was activated upon formation of embryoid bodies (EBs), an initial step in ES cell differentiation. When expressed during EB differentiation, a dominant-negative mutant of Ras suppressed induction of marker genes for extraembryonic endoderm differentiation, including GATA-4, GATA-6, alpha-fetoprotein, and hepatocyte nuclear factor 3beta, while an activated mutant promoted their induction. Expression of a Ras mutant that selectively activates the Raf/MEK/Erk pathway also enhanced induction of extraembryonic endoderm markers, and treatment with a MEK inhibitor resulted in their decreased expression. In addition, Ras stimulated downregulation of Nanog, a suppressor of endoderm differentiation in ES cells. These data suggest that Ras activation during EB differentiation plays a crucial role in initiation of extraembryonic endoderm differentiation.  相似文献   

15.
Menkes disease (MD) is a copper-deficient neurodegenerative disorder that manifests severe neurologic symptoms such as seizures, lethargic states, and hypotonia. Menkes disease is due to a dysfunction of ATP7A, but the pathophysiology of neurologic manifestation is poorly understood during embryonic development. To understand the pathophysiology of neurologic symptoms, molecular and cellular phenotypes were investigated in Menkes disease-derived induced pluripotent stem cells (MD-iPSCs). MD-iPSCs were generated from fibroblasts of a Menkes disease patient. Abnormal reticular distribution of ATP7A was observed in MD-fibroblasts and MD-iPSCs, respectively. MD-iPSCs showed abnormal morphology in appearance during embryoid body (EB) formation as compared with wild type (WT)-iPSCs. Intriguingly, aberrant switch of E-cadherin (E-cad) to N-cadherin (N-cad) and impaired neural rosette formation were shown in MD-iPSCs during early differentiation. When extracellular copper was chelated in WT-iPSCs by treatment with bathocuprione sulfate, aberrant switch of E-cad to N-cad and impaired neuronal differentiation were observed, like in MD-iPSCs. Our results suggest that neurological defects in Menkes disease patients may be responsible for aberrant cadherin transition and impaired neuronal differentiation during early developmental stage.  相似文献   

16.
Induced pluripotent stem(i PS) cells, somatic cells reprogrammed to the pluripotent state by forced expression of defined factors, represent a uniquely valuable resource for research and regenerative medicine. However, this methodology remains inefficient due to incomplete mechanistic understanding of the reprogramming process. In recent years, various groups have endeavoured to interrogate the cell signalling that governs the reprogramming process, including LIF/STAT3, BMP, PI3 K, FGF2, Wnt, TGFβ and MAPK pathways, with the aim of increasing our understanding and identifying new mechanisms of improving safety, reproducibility and efficiency. This has led to a unified model of reprogramming that consists of 3 stages: initiation, maturation and stabilisation. Initiation of reprogramming occurs in almost all cells that receive the reprogramming transgenes; most commonly Oct4, Sox2, Klf4 and c Myc, and involves a phenotypic mesenchymal-to-epithelial transition. The initiation stage is also characterised by increased proliferation and a metabolic switch from oxidative phosphorylation to glycolysis. The maturation stage is considered the major bottleneck within the process, resulting in very few "stabilisation competent" cells progressing to the final stabilisation phase. To reach this stage in both mouse and human cells, pre-i PS cells must activate endogenous expression of the core circuitry of pluripotency, comprising Oct4, Sox2, and Nanog, and thus reach a state of transgene independence. By the stabilisation stage, i PS cells generally use the same signalling networks that govern pluripotency in embryonic stem cells. These pathways differ between mouse and human cells although recent work has demonstrated that this is context dependent. As i PS cell generation technologies move forward, tools are being developed to interrogate the process in more detail, thus allowing a greater understanding of this intriguing biological phenomenon.  相似文献   

17.
18.
Cancer is a highly heterogeneous group of diseases that despite improved treatments remain prevalent accounting for over 14 million new cases and 8.2 million deaths per year. Studies into the process of carcinogenesis are limited by lack of appropriate models for the development and pathogenesis of the disease based on human tissues. Primary culture of patient samples can help but is difficult to grow for a number of tissues. A potential opportunity to overcome these barriers is based on the landmark study by Yamanaka which demonstrated the ability of four factors;Oct4, Sox2, Klf4, and c-Myc to reprogram human somatic cells in to pluripotency. These cells were termed induced pluripotent stem cells(i PSCs) and display characteristic properties of embryonic stem cells. This technique has a wide range of potential uses including disease modelling, drug testing and transplantation studies. Interestingly i PSCs also share a number of characteristics with cancer cells including self-renewal and proliferation, expression of stem cell markers and altered metabolism. Recently, i PSCs have been generated from a number of human cancer cell lines and primary tumour samples from a range of cancers in an attempt to recapitulate the development of cancer and interrogate the underlying mechanisms involved. This review will outline the similarities between the reprogramming process and carcinogenesis, and how these similarities have been exploited to generate i PSC models for a number of cancers.  相似文献   

19.

Background

Dopamine neurons derived from induced pluripotent stem cells have been widely studied for the treatment of Parkinson's disease. However, various difficulties remain to be overcome, such as tumor formation, fragility of dopamine neurons, difficulty in handling large numbers of dopamine neurons, and immune reactions. In this study, human induced pluripotent stem cell-derived precursors of dopamine neurons were encapsulated in agarose microbeads. Dopamine neurons in microbeads could be handled without specific protocols, because the microbeads protected the fragile dopamine neurons from mechanical stress.

Methods

hiPS cells were seeded on a Matrigel-coated dish and cultured to induce differentiation into a dopamine neuronal linage. On day 18 of culture, cells were collected from the culture dishes and seeded into U-bottom 96-well plates to induce cell aggregate formation. After 5 days, cell aggregates were collected from the plates and microencapsulated in agarose microbeads. The microencapsulated aggregates were cultured for an additional 45 days to induce maturation of dopamine neurons.

Results

Approximately 60% of all cells differentiated into tyrosine hydroxylase-positive neurons in agarose microbeads. The cells released dopamine for more than 40 days. In addition, microbeads containing cells could be cryopreserved.

Conclusion

hiPS cells were successfully differentiated into dopamine neurons in agarose microbeads.

General significance

Agarose microencapsulation provides a good supporting environment for the preparation and storage of dopamine neurons.  相似文献   

20.
Stem cells were derived from hatched blastocyst-stage mouse embryos of the C57BL/6 strain employing a knockout serum replacement instead of the traditional fetal calf serum, thereby avoiding the use of immunosurgery. Although fetal calf serum was not good for isolation of stem cells, a combination of this serum plus knockout serum increased the expansion rate of the cell culture. The derived cells were capable of maintaining an undifferentiated state during several passages, as demonstrated by the presence of alkaline phosphatase activity, stage-specific embryonic antigen 1 (SSEA-1), and octamer binding protein 4 (Oct-4). Suspension culture in bacteriological dishes gave better results than the hanging drop method for differentiation by means of embryoid body formation. Mouse embryonic stem cells showed spontaneous differentiation into derivatives of the 3 germ layers in culture media supplemented with fetal calf serum but not with knockout serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号