首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
转录因子AKNA是具有AT-hook模体的核内蛋白质,与富含AT碱基的DNA区域相结合调控靶基因的转录。AKNA主要在B淋巴细胞、T淋巴细胞、自然杀伤性细胞和干细胞上表达,介导免疫反应的发生。转录因子AKNA的单核苷酸多态性(SNP)可增加宫颈癌的风险,AKNA功能的丧失导致子宫颈肿瘤性病变。敲除AKNA基因可导致炎性因子、蛋白酶和趋化因子的富集,诱发中性粒细胞介导的炎性反应。本文从转录因子AKNA的结构特征、生物学功能和功能调控三方面进行综述,旨在为后续关于AKNA转录调控网络和信号通路的研究提供依据。  相似文献   

2.
3.
4.
5.
C57BL/6 (B6) mice with targeted mutations of immune function genes were used to investigate the mechanism of recovery from experimental autoimmune encephalomyelitis (EAE). The acute phase of passive EAE in the B6 mouse is normally resolved by partial recovery followed by mild sporadic relapses. B6 TCR beta-chain knockout (KO) recipients of a myelin oligodendrocyte glycoprotein p35-55 encephalitogenic T cell line failed to recover from the acute phase of passive EAE. In comparison with wild-type mice, active disease was more severe in beta(2)-microglobulin KO mice. Reconstitution of TCR beta-chain KO mice with wild-type spleen cells halted progression of disease and favored recovery. Spleen cells from T cell-deficient mice, IL-7R KO mice, or IFN-gamma KO mice were ineffective in this regard. Irradiation or treatment of wild-type spleen cell population with anti-NK1.1 mAb before transfer abrogated the protective effect. Removal of DX5(+) cells from wild-type spleen cells by anti-DX5 Ab-coated magnetic beads before reconstitution abrogated the suppressive properties of the spleen cells. TCR-deficient recipients of the enriched DX5(+) cell population recovered normally from passively induced acute disease. DX5(+) cells were sorted by FACS into DX5(+) alpha beta TCR(+) and DX5(+) alpha beta TCR(-) populations. Only recipients of the former recovered normally from clinical disease. These results indicate that recovery from acute EAE is an active process that requires NK1.1(+), DX5(+) alpha beta(+) TCR spleen cells and IFN-gamma.  相似文献   

6.
Cluster of differentiation 69 (CD69) has been identified as a lymphocyte early activation marker, and recent studies have indicated that CD69 mediates intracellular signals and plays an important role in various inflammatory diseases. Cigarette smoke (CS) is a strong proinflammatory stimulus that induces the release of proinflammatory mediators by recruiting macrophages and neutrophils into the lung tissue, and is one of the main risk factors for a number of chronic diseases. However, the potential role of CD69 in CS-induced pulmonary inflammation has not been determined. To address to this question, CD69-deficient (KO) and wild-type (WT) mice were subjected to CS-induced acute pulmonary inflammation. After the exposure with CS, the expression of CD69 in the lung of WT mice was significantly induced, it was predominantly observed in macrophages. In conjunction with this phenomenon, neutrophil and macrophage cell counts, and expression of several cytokines were significantly higher in the bronchoalveolar lavage fluid (BALF) of CS-exposed WT mice compared with air-exposed WT mice. Likewise, the CS-induced accumulation of inflammatory cells and cytokines expression were significantly lower in CD69-KO mice than in WT mice. These results suggest that CD69 on macrophages is involved in CS-induced acute pulmonary inflammation.  相似文献   

7.
Cluster of differentiation 69 (CD69) has been identified as a lymphocyte early activation marker, and recent studies have indicated that CD69 mediates intracellular signals and plays an important role in various inflammatory diseases. Cigarette smoke (CS) is a strong proinflammatory stimulus that induces the release of proinflammatory mediators by recruiting macrophages and neutrophils into the lung tissue, and is one of the main risk factors for a number of chronic diseases. However, the potential role of CD69 in CS-induced pulmonary inflammation has not been determined. To address to this question, CD69-deficient (KO) and wild-type (WT) mice were subjected to CS-induced acute pulmonary inflammation. After the exposure with CS, the expression of CD69 in the lung of WT mice was significantly induced, it was predominantly observed in macrophages. In conjunction with this phenomenon, neutrophil and macrophage cell counts, and expression of several cytokines were significantly higher in the bronchoalveolar lavage fluid (BALF) of CS-exposed WT mice compared with air-exposed WT mice. Likewise, the CS-induced accumulation of inflammatory cells and cytokines expression were significantly lower in CD69-KO mice than in WT mice. These results suggest that CD69 on macrophages is involved in CS-induced acute pulmonary inflammation.  相似文献   

8.
9.
Coordinated neutrophil and monocyte recruitment is a characteristic feature of acute lung inflammatory responses. We investigated the role of monocyte chemotactic protein-1 (CCL2, JE) and the chemokine receptor CCR2 in regulating alveolar leukocyte traffic. Groups of wild-type (WT) mice, CCR2-deficient mice, lethally irradiated CCR2-deficient and WT mice that were reciprocally bone marrow transplanted (chimeric CCR2 deficient and WT, respectively), chimeric CCR2-deficient mice with an enriched CCR2(+) alveolar macrophage population, and CCR2-deficient mice transfused with CCR2(+) mononuclear cells were treated with intratracheal CCL2 and/or Escherichia coli endotoxin. Our data show that alveolar monocyte recruitment is strictly dependent on CCR2. LPS-induced neutrophil migration to the lungs is CCR2 independent. However, when CCR2-bearing blood monocytes are present, alveolar neutrophil accumulation is accelerated and drastically amplified. We suggest that this hitherto unrecognized cooperativity between monocytes and neutrophils contributes to the strong, coordinated leukocyte efflux in lung inflammation.  相似文献   

10.
11.
Yeast Atg1 initiates autophagy in response to nutrient limitation. The Ulk gene family encompasses the mammalian orthologs of yeast ATG1. We created mice deficient for both Ulk1 and Ulk2 and found that the mice die within 24 h of birth. When found alive, pups exhibited signs of respiratory distress. Histological sections of lungs of the Ulk1/2 DKO pups showed reduced airspaces with thickened septae. A similar defect was seen in Atg5-deficient pups as both Ulk1/2 DKO and Atg5 KO lungs show numerous glycogen-laden alveolar type II cells by electron microscopy, PAS staining, and increased levels of glycogen in lung homogenates. No abnormalities were noted in expression of genes encoding surfactant proteins but the ability to incorporate exogenous choline into phosphatidylcholine, the major phospholipid component of surfactant, was increased in comparison to controls. Despite this, there was a trend for total phospholipid levels in lung tissue to be lower in Ulk1/2 DKO and Atg5 KO compared with controls. Autophagy was abundant in lung epithelial cells from wild-type mice, but lacking in Atg5 KO and Ulk1/2 DKO mice at P1. Analysis of the autophagy signaling pathway showed the existence of a negative feedback loop between the ULK1 and 2 and MTORC1 and 2, in lung tissue. In the absence of autophagy, alveolar epithelial cells are unable to mobilize internal glycogen stores independently of surfactant maturation. Together, the data suggested that autophagy plays a vital role in lung structural maturation in support of perinatal adaptation to air breathing.  相似文献   

12.
13.
MyD88 KO (knockout) mice are exquisitely sensitive to CNS (central nervous system) infection with Staphylococcus aureus, a common aetiological agent of brain abscess, exhibiting global defects in innate immunity and exacerbated tissue damage. However, since brain abscesses are typified by the involvement of both activated CNS-resident and infiltrating immune cells, in our previous studies it has been impossible to determine the relative contribution of MyD88-dependent signalling in the CNS compared with the peripheral immune cell compartments. In the present study we addressed this by examining the course of S. aureus infection in MyD88 bone marrow chimaera mice. Interestingly, chimaeras where MyD88 was present in the CNS, but not bone marrow-derived cells, mounted pro-inflammatory mediator expression profiles and neutrophil recruitment equivalent to or exceeding that detected in WT (wild-type) mice. These results implicate CNS MyD88 as essential in eliciting the initial wave of inflammation during the acute response to parenchymal infection. Microarray analysis of infected MyD88 KO compared with WT mice revealed a preponderance of differentially regulated genes involved in apoptotic pathways, suggesting that the extensive tissue damage characteristic of brain abscesses from MyD88 KO mice could result from dysregulated apoptosis. Collectively, the findings of the present study highlight a novel mechanism for CNS-resident cells in initiating a protective innate immune response in the infected brain and, in the absence of MyD88 in this compartment, immunity is compromised.  相似文献   

14.
15.
Acute inflammation is a common feature of many life-threatening pathologies, including septic shock. One hallmark of acute inflammation is the peroxidation of polyunsaturated fatty acids forming bioactive products that regulate inflammation. Myeloperoxidase (MPO) is an abundant phagocyte-derived hemoprotein released during phagocyte activation. Here, we investigated the role of MPO in modulating biologically active arachidonic acid (AA) and linoleic acid (LA) metabolites during acute inflammation. Wild-type and MPO-knockout (KO) mice were exposed to intraperitoneally injected endotoxin for 24 h, and plasma LA and AA oxidation products were comprehensively analyzed using a liquid chromatography–mass spectrometry method. Compared to wild-type mice, MPO-KO mice had significantly lower plasma levels of LA epoxides and corresponding LA- and AA-derived fatty acid diols. AA and LA hydroxy intermediates (hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids) were also significantly lower in MPO-KO mice. Conversely, MPO-deficient mice had significantly higher plasma levels of cysteinyl-leukotrienes with well-known proinflammatory properties. In vitro experiments revealed significantly lower amounts of AA and LA epoxides, LA- and AA-derived fatty acid diols, and AA and LA hydroxy intermediates in stimulated polymorphonuclear neutrophils isolated from MPO-KO mice. Our results demonstrate that MPO modulates the balance of pro- and anti-inflammatory lipid mediators during acute inflammation and, in this way, may control acute inflammatory diseases.  相似文献   

16.
C/EBPs, particularly C/EBPβ and C/EBPδ, are known to participate in the regulation of many genes associated with inflammation. However, very little is known regarding the activation and functions of C/EBPβ and C/EBPδ in acute lung inflammation and injury. In this study, we show that both C/EBPβ and C/EBPδ activation are triggered in lungs and in alveolar macrophages following intrapulmonary deposition of IgG immune complexes. We further show that mice carrying a targeted deletion of the C/EBPβ gene displayed significant attenuation of the permeability index (lung vascular leak of albumin), lung neutrophil accumulation (myeloperoxidase activity), total number of WBCs, and neutrophils in bronchoalveolar lavage fluids compared with wild-type mice. Moreover, the mutant mice expressed considerably less TNF-α, IL-6, and CXC/CC chemokine and soluble ICAM-1 proteins in bronchoalveolar lavage fluids, and corresponding mRNAs in the IgG immune complex-injured lung, compared with wild-type mice. These phenotypes were associated with a significant reduction in morphological lung injury. In contrast, C/EBPδ deficiency had no effect on IgG immune complex-induced lung injury. IgG immune complex-stimulated C/EBPβ-deficient alveolar macrophages released significantly less TNF-α, IL-6, MIP-2, keratinocyte cell-derived chemokine, and MIP-1α compared with wild-type cells. Similar decreases in IgG immune complex-induced inflammatory mediator production were observed following small interfering RNA ablation of C/EBPβ in a murine alveolar macrophage cell line. These findings implicate C/EBPβ as a critical regulator of IgG immune complex-induced inflammatory responses and injury in the lung.  相似文献   

17.
The role of the β2AR (β2 adrenergic receptor) after stroke is unclear as pharmacological manipulations of the β2AR have produced contradictory results. We previously showed that mice deficient in the β2AR (β2KO) had smaller infarcts compared with WT (wild-type) mice (FVB) after MCAO (middle cerebral artery occlusion), a model of stroke. To elucidate mechanisms of this neuroprotection, we evaluated changes in gene expression using microarrays comparing differences before and after MCAO, and differences between genotypes. Genes associated with inflammation and cell deaths were enriched after MCAO in both genotypes, and we identified several genes not previously shown to increase following ischaemia (Ccl9, Gem and Prg4). In addition to networks that were similar between genotypes, one network with a central core of GPCR (G-protein-coupled receptor) and including biological functions such as carbohydrate metabolism, small molecule biochemistry and inflammation was identified in FVB mice but not in β2KO mice. Analysis of differences between genotypes revealed 11 genes differentially expressed by genotype both before and after ischaemia. We demonstrate greater Glo1 protein levels and lower Pmaip/Noxa mRNA levels in β2KO mice in both sham and MCAO conditions. As both genes are implicated in NF-κB (nuclear factor κB) signalling, we measured p65 activity and TNFα (tumour necrosis factor α) levels 24 h after MCAO. MCAO-induced p65 activation and post-ischaemic TNFα production were both greater in FVB compared with β2KO mice. These results suggest that loss of β2AR signalling results in a neuroprotective phenotype in part due to decreased NF-κB signalling, decreased inflammation and decreased apoptotic signalling in the brain.  相似文献   

18.
Host responses to Pneumocystis carinii infection mediate impairment of pulmonary function and contribute to the pathogenesis of pneumonia. IL-10 is known to inhibit inflammation and reduce the severity of pathology caused by a number of infectious organisms. In the present studies, IL-10-deficient (IL-10 knockout (KO)) mice were infected with P. carinii to determine whether the severity of pathogenesis and the efficiency of clearance of the organisms could be altered in the absence of IL-10. The clearance kinetics of P. carinii from IL-10 KO mice was significantly enhanced compared with that of wild-type (WT) mice. This corresponded to a more intense CD4(+) and CD8(+) T cell response as well as an earlier neutrophil response in the lungs of IL-10 KO mice. Furthermore, IL-12, IL-18, and IFN-gamma were found in the bronchoalveolar lavage fluids at earlier time points in IL-10 KO mice suggesting that alveolar macrophages were activated earlier than in WT mice. However, when CD4(+) cells were depleted from P. carinii-infected IL-10 KO mice, the ability to enhance clearance was lost. Furthermore, CD4-depleted IL-10 KO mice had significantly more lung injury than CD4-depleted WT mice even though the intensity of the inflammatory responses was similar. This was characterized by increased vascular leakage, decreased oxygenation, and decreased arterial pH. These data indicate that IL-10 down-regulates the immune response to P. carinii in WT mice; however, in the absence of CD4(+) T cells, IL-10 plays a critical role in controlling lung damage independent of modulating the inflammatory response.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号