首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent advances in stem cell technology have generated enthusiasm for their potential to study and treat a diverse range of human disease. Pluripotent human stem cells for therapeutic use may, in principle, be obtained from two sources: embryonic stem cells (hESCs), which are capable of extensive self-renewal and expansion and have the potential to differentiate into any somatic tissue, and induced pluripotent stem cells (iPSCs), which are derived from differentiated tissue such as adult skin fibroblasts and appear to have the same properties and potential, but their generation is not dependent upon a source of embryos. The likelihood that clinical transplantation of hESC- or iPSC-derived tissues from an unrelated (allogeneic) donor that express foreign human leucocyte antigens (HLA) may undergo immunological rejection requires the formulation of strategies to attenuate the host immune response to transplanted tissue. In clinical practice, individualized iPSC tissue derived from the intended recipient offers the possibility of personalized stem cell therapy in which graft rejection would not occur, but the logistics of achieving this on a large scale are problematic owing to relatively inefficient reprogramming techniques and high costs. The creation of stem cell banks comprising HLA-typed hESCs and iPSCs is a strategy that is proposed to overcome the immunological barrier by providing HLA-matched (histocompatible) tissue for the target population. Estimates have shown that a stem cell bank containing around 10 highly selected cell lines with conserved homozygous HLA haplotypes would provide matched tissue for the majority of the UK population. These simulations have practical, financial, political and ethical implications for the establishment and design of stem cell banks incorporating cell lines with HLA types that are compatible with different ethnic populations throughout the world.  相似文献   

2.
Stem cells are able to generate both cells that differentiate and cells that remain undifferentiated but potentially have the same developmental program. The prolonged duration of the protective immune memory for infectious diseases such as polio, small pox, and measles, suggested that memory T cells may have stem cell properties. Understanding the molecular basis for the life-long persistence of memory T cells may be useful to project targeted therapies for immune deficiencies and infectious diseases and to formulate vaccines. In the last decade evidence from different laboratories shows that memory T cells may share self-renewal pathways with bone marrow hematopoietic stem cells. In stem cells the intrinsic self-renewal activity, which depends on gene expression, is known to be modulated by extrinsic signals from the environment that may be tissue specific. These extrinsic signals for stemness of memory T cells include cytokines such as IL-7 and IL-15 and there are other cytokine signals for maintaining the cytokine signature (TH1, TH2, etc.) of memory T cells. Intrinsic and extrinsic pathways that might be common to bone marrow hematopoietic stem cells and memory T lymphocytes are discussed and related to self-renewal functions.  相似文献   

3.
Adult stem cell therapy is being used extensively to rejuvenate damaged tissue. One important tissue source to obtain these cells is adipose, which contains cells called adipose-derived stem cells (ADSCs). These cells have a great therapeutic potential not only for their multipotent properties as well as for immunomodulatory effects on the immune system. Parkinson's disease is characterized as neurodegenerative disorder which etiology is undoubtedly related to neuroinflammation process. The properties of ADSCs can be used as a new tool in stem cells therapy to treat neurodegenerative disorders. However, their efficacies are still controversial. Some authors have reported neuroprotection effects, while others did not find differences or stem cells increased the damage. Our previous study showed that ADSCs can survive long time after transplantation, suggesting us some biological effects could need more time to be repaired. In this study, we assessed the neuroprotection 6 months after transplantation. Our results suggest ADSCs can protect the dopaminergic loss after lipopolysaccharide (LPS) injection both reducing the microglia activation and differentiating into dopaminergic cells.  相似文献   

4.
Wound healing is a complex but a fine-tuned biological process in which human skin has the ability to regenerate itself following damage. However, in particular conditions such as deep burn or diabetes the process of wound healing is compromised. Despite investigations on the potency of a wide variety of stem cells for wound healing, adipose-derived stem cells (ASCs) seem to possess the least limitations for clinical applications, and literature showed that ASCs can improve the process of wound healing very likely by promoting angiogenesis and/or vascularisation, modulating immune response, and inducing epithelialization in the wound. In the present review, advantages and disadvantages of various stem cells which can be used for promoting wound healing are discussed. In addition, potential mechanisms of action by which ASCs may accelerate wound healing are summarised. Finally, clinical studies applying ASCs for wound healing and the associated limitations are reviewed.  相似文献   

5.
Human embryonic stem cells (hESC) are able to maintain pluripotency in culture, to proliferate indefinitely and to differentiate into all somatic cell types. Due to these unique properties, hESC may become an exceptional source of tissues for transplantation and have a great potential for the therapy of incurable diseases. Here, we review new developments in the area of embryonic stem cells and discuss major challenges — standardization of protocols for cell derivation and cultivation, identification of specific molecular markers, development of new approaches for directed differentiation, etc. — which remain to be settled, prior to safe and successful clinical application of stem cells. We appraise several potential approaches in hESC-based therapy including derivation of autologous cells via therapeutic cloning (1), generation of immune tolerance to allogenic donor cells via hematopoetic chimerism (2), and development of the banks of hESC lines compatible with the main antigens and exhibiting equivalent pluripotency (3). In addition, we discuss briefly induced pluripotent cells, which are derived via genetic modification of autologous somatic cells and are analogous to ESC. Our analysis demonstrates that uncontrollable differentiation in vivo and teratogenic potential of hESC are critical limitations of their application in clinical practice. Therefore, the major approach in hESC therapy is derivation of a specific differentiated progeny, which has lower proliferative potential and immune privilege, yet poses fewer risks for organism. The review demonstrates that cell therapy is far more complex and resource-consuming process as compared with drug-based medicine and consequently pluripotent stem cell biology and technology still requires further investigation and development before these cells can be used in clinical practice.  相似文献   

6.
Orthotopic liver transplantation is, to date, the only proven effective treatment for end-stage liver disease. However, it suffers from lack of donors and immunorejection. Here, we speculate that co-transplantation of induced pluripotent stem (iPS) cells derived hepatocytes and mesenchymal stem cells (MSCs) may offer an alternative way to treat patients with end-stage liver disease. Recently, progress on iPS cells, homogeneous differentiation of hepatocyte-like cells from embryonic stem cells (ESCs), and paracrine effects by MSCs highlight the possibility. Safe, efficient and rapid generation of iPS cells has been reliably produced by several experimental laboratories. Methods for highly efficient and homogeneous differentiation of ESCs into functional hepatocytes have been established as well. Moreover, paracrine effects by MSCs have been proven to play an important role in liver regeneration and repair, and the effects can be used as an enhancer for engraftment. All of these remarkable developments lead to this hypothesis which may offer a novel therapeutic strategy for treatment of patients with end-stage liver disease, though some issues about safety and efficacy need to be further guaranteed.  相似文献   

7.
造血干细胞移植已成为治疗白血病、再生障碍性贫血、重症免疫缺陷征、地中海贫血、急性放射病、某些恶性实体瘤和淋巴瘤等造血及免疫系统功能障碍性疾病的成熟技术和重要手段,另外这一技术还被尝试用于治疗艾滋病,已取得积极的效果。但是由于移植需要配型相同的供体,并且过程复杂,使得造血干细胞移植因缺少配型相同的供体来源以及费用昂贵而不能被广泛应用。胚胎干细胞是一种能够在体外保持未分化状态并且能进行无限增殖的细胞,在适合条件下能够分化为体内各种类型的细胞,研究胚胎干细胞分化为造血干细胞,不仅可作为研究动物的早期造血发生的模型,而且可以增加造血干细胞的来源,还可以通过基因剔除、治疗性克隆等方法来解决移植排斥的问题,从而为造血干细胞移植的发展扫除了障碍,因此有着重要的研究价值和应用前景。现对胚胎干细胞体外分化为造血干细胞的诱导方法,诱导过程中的调控机制,并对胚胎干细胞分化为造血干细胞的存在问题和发展前景进行讨论。  相似文献   

8.
In recent years, there has been an explosion of interest in stem cells, not just within the scientific and medical communities but also among politicians, religious groups and ethicists. Here, we summarize the different types of stem cells that have been described: their origins in embryonic and adult tissues and their differentiation potential in vivo and in culture. We review some current clinical applications of stem cells, highlighting the problems encountered when going from proof-of-principle in the laboratory to widespread clinical practice. While some of the key genetic and epigenetic factors that determine stem cell properties have been identified, there is still much to be learned about how these factors interact. There is a growing realization of the importance of environmental factors in regulating stem cell behaviour and this is being explored by imaging stem cells in vivo and recreating artificial niches in vitro. New therapies, based on stem cell transplantation or endogenous stem cells, are emerging areas, as is drug discovery based on patient-specific pluripotent cells and cancer stem cells. What makes stem cell research so exciting is its tremendous potential to benefit human health and the opportunities for interdisciplinary research that it presents.  相似文献   

9.
Stem cells have two common properties: the capacity for self-renewal and the potential to differentiate into one or more specialized cell types. In general, stem cells can be divided into two broad categories: adult (somatic) stem cells and embryonic stem cells. Recent evidence suggested that tumors may contain "cancer stem cells" with indefinite potential for self-renewal. In this review, we will focus on the molecular mechanisms regulating embryonic stem cell self-renewal and differentiation, and discuss how these mechanisms may be relevant in cancer cells.  相似文献   

10.
Stem cell therapy is not a new field, as indicated by the success of hematopoietic stem cell reconstitution for various hematological malignancies and immune-mediated disorders. In the case of tissue repair, the major issue is whether stem cells should be implanted, regardless of the type and degree of injury. Mesenchymal stem cells have thus far shown evidence of safety, based on numerous clinical trials, particularly for immune-mediated disorders. The premise behind these trials is to regulate the stimulatory immune responses negatively. To apply stem cells for other disorders, such as acute injuries caused by insults from surgical trauma and myocardial infarction, would require other scientific considerations. This does not imply that such injuries are not accompanied by immune responses. Indeed, acute injuries could accompany infiltration of immune cells to the sites of injuries. The implantation of stem cells within a milieu of inflammation will establish an immediate crosstalk among the stem cells, microenvironmental molecules, and resident and infiltrating immune cells. The responses at the microenvironment of tissue injury could affect distant and nearby organs. This editorial argues that the microenvironment of any tissue injury is a key consideration for effective stem cell therapy.  相似文献   

11.
Somatic plasticity of neural stem cells: Fact or fancy?   总被引:1,自引:0,他引:1  
Several studies have described the potential for embryonic and adult neural stem cells to differentiate into non-neural cells such as muscle and blood, tissues that are derived from non-neuroectodermal germ layers. This raised the exciting possibility that these cells possessed a broader range of differentiation potential than originally thought and raised interesting prospects for possible transplantation utilization. However, a number of recent reports have raised questions about whether the phenomena observed actually represented true somatic plasticity. In this review, we critically analyze these studies with the aim of providing some criteria by which future studies that address this important problem may be evaluated.  相似文献   

12.
Oral mucosa is continuously exposed to environmental forces and has to be constantly renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial stem cells necessary for tissue homeostasis. Despite considerable scientific advances in stem cell behavior in a number of tissues, fewer studies have been devoted to the stem cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the head and neck region, marked by their aggressiveness and invasiveness. Due to their highly tumorigenic properties, it has been suggested that CSC may be the critical population of cancer cells in the development of OSCC metastasis. This review presents a brief overview of epithelium stem cells with implications in oral health, and the clinical implications of the CSC concept in OSCC metastatic dissemination.  相似文献   

13.
Reprograming somatic cells using exogenetic gene expression represents a groundbreaking step in regenerative medicine. Induced pluripotent stem cells(i PSCs) are expected to yield novel therapies with the potential to solve many issues involving incurable diseases. In particular, applying i PSCs clinically holds the promise of addressing the problems of immune rejection and ethics that have hampered the clinical applications of embryonic stem cells. However, as i PSC research has progressed, new problems have emerged that need to be solved before the routine clinical application of i PSCs can become established. In this review, we discuss the current technologies and future problems of human i PSC generation methods for clinical use.  相似文献   

14.
Stem cell therapy is a promising approach to clinical healing in several diseases. A great variety of tissues (bone marrow, adipose tissue, and placenta) are potentially sources of stem cells. Placenta-derived stem cells (p-SCs) are in between embryonic and mesenchymal stem cells, sharing characteristics with both, such as non-carcinogenic status and property to differentiate in all embryonic germ layers. Moreover, their use is not ethically restricted as fetal membranes are considered medical waste after birth. In this context, the present review will be focused on the biological properties, culture and potential cell therapy uses of placental-derived stem cells. Immunophenotype characterization, mainly for surface marker expression, and basic principles of p-SC isolation and culture (mechanical separation or enzymatic digestion of the tissues, the most used culture media, cell plating conditions) will be presented. In addition, some preclinical studies that were performed in different medical areas will be cited, focusing on neurological, liver, pancreatic, heart, muscle, pulmonary, and bone diseases and also in tissue engineering field. Finally, some challenges for stem cell therapy applications will be highlighted. The understanding of the mechanisms involved in the p-SCs differentiation and the achievement of pure cell populations (after differentiation) are key points that must be clarified before bringing the preclinical studies, performed at the bench, to the medical practice.  相似文献   

15.
成体干细胞的可塑性:横向分化还是细胞融合?   总被引:1,自引:0,他引:1  
钱晖  黄淑帧 《生命科学》2005,17(1):25-29
近年来研究显示成体干细胞(adult stem cells)具有可塑性(plasticity),不仅可以生成它们所在组织的成熟细胞,而且在特定环境下能分化成其他组织类型细胞,这种跨系或跨胚层分化现象称为横向分化或转分化(transdifferentiation)。横向分化已为成体干细胞的研究和临床应用包括组织器官损伤的修复提供了新的思路和应用前景。然而,最近的一些研究进展又引出不同的解释,即成体干细胞的可塑性是由于细胞融合(cellfusion)的结果。在此,就成体干细胞的可塑性、横向分化、细胞融合等方面研究作一综述。  相似文献   

16.
Emerging concept of cancer as a stem cell disorder   总被引:2,自引:0,他引:2  
Evidence has accumulated that malignancy arises from maturation arrest of stem cells — rather than the dedifferentiation of somatic cells. To support this notion, stem cells in contrast to somatic cells are long lived cells and thus may become the subject of accumulating mutations that are crucial for the initiation/progression of cancer. More importantly they may maintain these mutations and pass them to daughter stem cells. Cancer stem cells (CSC) that derive from transformed normal stem cells (NSC) are responsible not only for tumor initiation, but also for its re-growth and metastasis. Accumulating evidence also indicates that adult tissues may contain a population of very small embryonic like (VSEL) stem cells that may give rise to some very immature tumors e.g., pediatric sarcomas. Similar molecular mechanisms operating in NSC and CSC regulate resistance to radio-chemotherapy and promote migration/metastasis. Thus, by studying the biology of NSC we can learn more about cancer.  相似文献   

17.
Human embryonic stem cells (HESC) are pluripotent stem cells isolated from the inner cell mass of human blastocysts. With the first successful culturing of HESC, a new era of regenerative medicine was born. HESC can differentiate into almost any cell type and, in the future, might replace solid organ transplantation and even be used to treat progressive degenerative diseases such as Parkinson’s disease. Although this sounds promising, certain obstacles remain with regard to their clinical use, such as culturing HESC under well-defined conditions without exposure to animal proteins, the risk of teratoma development and finally the avoidance of immune rejection. In this review, we discuss the immunological properties of HESC and various strategic solutions to circumvent immune rejection, such as stem cell banking, somatic cell nuclear transfer and the induction of tolerance by co-stimulation blockade and mixed chimerism.  相似文献   

18.
Unlike central nervous system neurons; those in the peripheral nervous system have the potential for full regeneration after injury. Following injury, recovery is controlled by schwann cells which replicate and modulate the subsequent immune response. The level of nerve recovery is strongly linked to the severity of the initial injury despite the significant advancements in imaging and surgical techniques. Multiple experimental model shave been used with varying successes to augment the natural regenerative processes which occur following nerve injury. Stem cell therapy in peripheral nerve injury may be an important future intervention to improve the best attainable clinical results. In particular adipose derived stem cells(ADSCs) are multipotent mesenchymal stem cells similar to bone marrow derived stem cells, which are thought to have neurotrophic properties and the ability to differentiate into multiple lineages. They are ubiquitous within adipose tissue; they can form many structures resembling the mature adult peripheral nervous system. Following early in vitro work; multiple small and large animal in vivo models have been used in conjunction with conduits, autografts and allografts to successfully bridge the peripheral nerve gap. Some of the ADSC related neuroprotective and regenerative properties have been elucidated however much work remains before a model can be used successfully in human peripheral nerve injury(PNI). This review aims to provide a detailed overview of progress made in the use of ADSC in PNI, with discussion on the role of a tissue engineered approach for PNI repair.  相似文献   

19.
Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat.  相似文献   

20.
Recent studies indicate that cancer stem cells (CSCs) exist in most hematological and solid tumors. CSCs are characterized by their ability to self-renew and their capacity to differentiate into the multitude of cells that comprise the tumor mass. Moreover, these cells have been shown to be intrinsically resistant to conventional anticancer therapies. Despite their fundamental role in cancer pathogenesis, the cellular origin of CSCs remains highly controversial. The aim of this study was to examine whether heterogeneous cancer cells can acquire stem cell-like properties in response to chemotherapy. We demonstrate that carboplatin can induce the self-renewal (spherogenesis) and pluripotency (Sox2 and Oct3/4 expression) of hepatocellular carcinoma (HCC) cells grown under stem cell culture conditions. Moreover, we show that non-CSC cells, obtained by side population flow cytometric sorting using Hoechst 33342, can acquire stem-like properties after exposure to carboplatin. Finally, we show that knockdown of Sox2 and Oct3/4 gene expression in HCC cells can reduce carboplatin-mediated increases in sphere formation and increase cellular sensitivity to chemotherapy. Taken together, our data indicate that bulk cancer cells may be an important source of CSCs during tumor development, and that targeting Sox2 and/or Oct3/4 may be a promising approach for targeting CSCs in clinical cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号