首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ten embryonic stem (ES) cell lines from mink blastocysts were isolated and characterized. All the lines had a normal diploid karyotype; of the ten lines studied, five had the XX and five had the XY constitution. Testing of the pluripotency of the ES-like cells demonstrated that 1) among four lines of genotype XX, and X was late-replicating in three; both Xs were active in about one-third of cells of line MES8, and analysis of glucose-6-phosphate dehydrogenase revealed no dosage compensation for the X-linked gene; 2) when cultured in suspension, the majority of lines were capable of forming "simple" embryoid bodies (EB), and two only showed the capacity for forming "cystic" multilayer EBs. However, formation of ectoderm or foci of yolk sac hematopoiesis, a feature of mouse ES cells, was not observed in the "cystic" EB; 3) when cultured as a monolayer without feeder, the ES cells differentiated into either vimentin-positive fibroblast-like cells or cytokeratin-positive epithelial-like cells (less frequently); neural cells appeared in two lines; 4) when injected into athymic mice, only one of the four tested lines gave rise to tumors. These were fibrosarcomas composed of fibroblast-like cells, with an admixture of smooth muscular elements and stray islets of epithelial tissue; (5) when the ES cells of line MES1 were injected into 102 blastocyst cavities and subsequently transplanted into foster mothers, we obtained 30 offspring. Analysis of the biochemical markers and coat color did not demonstrate the presence of chimaeras among offspring. Thus the cell lines derived from mink blastocysts are true ES cells. However, their pluripotential capacities are restricted.  相似文献   

2.
The EUCOMM and KOMP programs have generated targeted conditional alleles in mouse embryonic stem cells for nearly 10,000 genes. The availability of these stem cell resources will greatly accelerate the functional analysis of genes in mice and in cultured cells. We present a method for conditional ablation of genes in ES cells using vectors and targeted clones from the EUCOMM and KOMP conditional resources. Inducible homozygous cells described here provide a precisely controlled experimental system to study gene function in a model cell.  相似文献   

3.
The introduction of germ line modifications by gene targeting in mouse embryonic stem (ES) cells has proven a fundamental technology to relate genes to mammalian biology. Critical aspects required for successful gene targeting have traditionally been experimental enhancements that increase the frequency or detection of homologous recombination within ES cells; however, the utilization of such methods may still result in the failed isolation of a positively targeted ES cell clone. In this study, we discuss the current enhancement methods and describe an ES cell pooling strategy that maximizes the ability to detect properly targeted ES cells regardless of an inherent low targeting efficiency. The sensitivity required to detect correctly targeted events out of a pool of ES cell clones is provided by polymerase chain reaction (PCR), and only those pools containing positives need to be expanded and screened to find individually targeted clones. This method made it possible to identify targeted clones from a screen of approximately 2,300 ES cell colonies by performing only 123 PCR reactions. This technically streamlined approach bypasses the need to troubleshoot and re-engineer an existing targeting construct that is functionally suitable despite its low targeting frequency.  相似文献   

4.
5.
BackgroundCell fusion is a phenomenon that is observed in various tissues in vivo, resulting in acquisition of physiological functions such as liver regeneration. Fused cells such as hybridomas have also been produced artificially in vitro. Furthermore, it has been reported that cellular reprogramming can be induced by cell fusion with stem cells.MethodsFused cells between mammalian fibroblasts and mouse embryonic stem cells were produced by electrofusion methods. The phenotypes of each cell lines were analyzed after purifying the fused cells.ResultsColonies which are morphologically similar to mouse embryonic stem cells were observed in fused cells of rabbit, bovine, and zebra fibroblasts. RT-PCR analysis revealed that specific pluripotent marker genes that were never expressed in each mammalian fibroblast were strongly induced in the fused cells, which indicated that fusion with mouse embryonic stem cells can trigger reprogramming and acquisition of pluripotency in various mammalian somatic cells.ConclusionsOur results can help elucidate the mechanism of pluripotency maintenance and the establishment of highly reprogrammed pluripotent stem cells in various mammalian species.  相似文献   

6.
While endogenous Myc (c-myc) and Mycn (N-myc) have been reported to be separately dispensable for murine embryonic stem cell (mESC) function, myc greatly enhances induced pluripotent stem (iPS) cell formation and overexpressed c-myc confers LIF-independence upon mESC. To address the role of myc genes in ESC and in pluripotency generally, we conditionally knocked out both c- and N-myc using myc doubly homozygously floxed mESC lines (cDKO). Both lines of myc cDKO mESC exhibited severely disrupted self-renewal, pluripotency, and survival along with enhanced differentiation. Chimeric embryos injected with DKO mESC most often completely failed to develop or in rare cases survived but with severe defects. The essential nature of myc for self-renewal and pluripotency is at least in part mediated through orchestrating pluripotency-related cell cycle and metabolic programs. This study demonstrates that endogenous myc genes are essential for mESC pluripotency and self-renewal as well as providing the first evidence that myc genes are required for early embryogenesis, suggesting potential mechanisms of myc contribution to iPS cell formation.  相似文献   

7.
The post-thaw recovery of mouse embryonic stem cells (mESCs) is often assumed to be adequate with current methods. However as this publication will show, this recovery of viable cells actually varies significantly by genetic background. Therefore there is a need to improve the efficiency and reduce the variability of current mESC cryopreservation methods. To address this need, we employed the principles of fundamental cryobiology to improve the cryopreservation protocol of four mESC lines from different genetic backgrounds (BALB/c, CBA, FVB, and 129R1 mESCs) through a comparative study characterizing the membrane permeability characteristics and membrane integrity osmotic tolerance limits of each cell line. In the companion paper, these values were used to predict optimal cryoprotectants, cooling rates, warming rates, and plunge temperatures, and then these predicted optimal protocols were validated against standard freezing protocols.  相似文献   

8.
9.
Pluripotency of embryonic stem cells   总被引:2,自引:0,他引:2  
  相似文献   

10.
Due to the limited understanding of self-renewal and pluripotency related signaling in stem cells, extracting information from genome-wide expression data is not only important but also challenging. With the combined use of two methods, we analyzed a set of microarray data at 11 time points from three mouse embryonic stem cell lines cultivated with and without leukemia inhibitory factor (LIF) for 14 days. Albeit the expression of individual genes in signaling pathways was not noticeably different between cells cultivated with and without LIF, at gene-set level the expression of ERK/MAPK (but not JAK/STAT) and cell cycle related genes was found significantly enriched in cells cultivated with LIF. This indicates that the Ras/Raf/ERK pathway, in addition to JAK/STAT, may also be a key player to carry on external LIF signal into mouse embryonic stem cells to promote self-renewal. When data at the first 7 time points were compared with data at the last 4 time points, the expression of several cell cycle related gene sets was apparently enriched in all three cell lines, indicating the active cell proliferation in the first 2 days. Compared with the slight decay of Oct4/Nanog/Sox2 during the 14 days, the expression of cell differentiation genes such as Gata4/6 underwent a drastic increase, which indicates that the upregulated expression of cell differentiation genes may better reflect the loss of self renewal than the down regulated expression of the stemness indicators Oct4, Sox2 and Nanog. Apart from differential expression and gene set enrichment analyses, a clustering algorithm was also used to classify genes into co-expression clusters. The possible regulation of two clusters, whose expression was most changed during cell culture from very low to very high, was explored. The drastic changes of these genes, including Slc39a8 which was a potential indicator of cell differentiation, in contrast the slight changes of self-renewal genes, imply that differentiation may be the default fate of stem cells and self-renewal may rely on a maintenance mechanism. When that mechanism weakens, cell differentiation begins. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.
Using the lipofection reagent LipofectAMINE 2000 we have examined the delivery of plasmid DNA (5-200 kb) to mouse embryonic stem (mES) cells by flow cytometry. To follow the physical uptake of lipoplexes we labeled DNA molecules with the fluorescent dye TOTO-1. In parallel, expression of an EGFP reporter cassette in constructs of different sizes was used as a measure of nuclear delivery. The cellular uptake of DNA lipoplexes is dependent on the uptake competence of mES cells, but it is largely independent of DNA size. In contrast, nuclear delivery was reduced with increasing plasmid size. In addition, linear DNA is transfected with lower efficiency than circular DNA. Inefficient cytoplasmic trafficking appears to be the main limitation in the nonviral delivery of large DNA constructs to the nucleus of mES cells. Overcoming this limitation should greatly facilitate functional studies with large genomic fragments in embryonic stem cells.  相似文献   

13.
Mouse embryonic stem (ES) cells can be differentiated into neural lineage cells, but the differentiation efficiency remains low. This study revealed two important factors that influence the neural differentiation efficiency of mouse ES cells: the first is the quality of embryonic bodies (EBs); good quality of EBs consistently originated from a suspension culture of 1 × 105 ES cells/ml serum-free chemically defined neural inducing medium and they exhibited a smooth round shape, with a dark central region surrounded by a light band. Such EBs are capable of attaining high neural differentiation efficiency. However, poor quality EBs originated from a suspension culture of 1 × 106 ES cells/ml serum-free chemically defined neural inducing medium and exhibited an irregular shape or adhered to the bottom of the dish; they displayed low neural differentiation efficiency. The second factor is the seeding density of EBs: a low seeding density (5 EBs/cm2) induced cells to differentiate into a more caudalized subtypes compared to the cells obtained from high seeding density (20 EBs/cm2). These findings provided fresh insight into the neural induction of mouse ES cells.  相似文献   

14.
Human embryonic stem cells (hESCs) can self-renew indefinitely and differentiate into all cell types in the human body. Therefore, they are valuable in regenerative medicine, human developmental biology and drug discovery. A number of hESC lines have been derived from the Chinese population,but limited of them are available for research purposes. Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin. These hESCs express alkaline phosphatase and hESC-specific markers, including Oct4, Nanog, SSEA-3, SSEA-4,TRA-1-60 and TRA-1-81. They also have high levels of telomerase activity and normal karyotypes. These cells can form embryoid body in vitro and can be differentiated into all three germ layers in vivo by teratoma formation. The newly established hESCs will be distributed for research purposes.The availability of hESC lines from the Chinese population will facilitate studies on the differences in hESCs from different ethnic groups.  相似文献   

15.
Pluripotent stem cells have the capacity to divide indefinitely and to differentiate into all somatic cells and tissue lines. They can be genetically manipulated in vitro by knocking genes in or out, and therefore serve as an excellent tool for gene function studies and for the generation of models for some human diseases. Since 1981, when the first mouse embryonic stem cell (ESC) line was generated, many attempts have been made to generate pluripotent stem cell lines from other species. Comparative characterization of ESCs from different species would help us to understand differences and similarities in the signaling pathways involved in the maintenance of pluripotency and the initiation of differentiation, and would reveal whether the fundamental mechanism controlling self-renewal of pluripotent cells is conserved across different species. This report gives an overview of research into embryonic and induced pluripotent stem cells in the rabbit, an important nonrodent species with considerable merits as an animal model for specific diseases. A number of putative rabbit ESC and induced pluripotent stem cell lines have been described. All of them expressed stem cell-associated markers and maintained apparent pluripotency during multiple passages in vitro, but none have been convincingly proven to be fully pluripotent in vivo. Moreover, as in other domestic species, the markers currently used to characterize the putative rabbit ESCs are suboptimal because recent studies have revealed that they are not always specific to the pluripotent inner cell mass. Future validation of rabbit pluripotent stem cells would benefit greatly from a validated panel of molecular markers specific to pluripotent cells of the developing rabbit embryos. Using rabbit-specific pluripotency genes may improve the efficiency of somatic cell reprogramming for generating induced pluripotent stem cells and thereby overcome some of the challenges limiting the potential of this technology.  相似文献   

16.
AIM: To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging.METHODS: Mouse embryonic stem cells (ESCs) labeled with enhanced yellow fluorescent protein were cultured in three-dimensional (3-D) self-assembling scaffolds and compared with traditional two-dimentional (2-D) culture techniques requiring mouse embryonic fibroblast feeder layers or leukemia inhibitory factor. 3-D scaffolds encapsulating ESCs were prepared by mixing ESCs with polyethylene glycol tetra-acrylate (PEG-4-Acr) and thiol-functionalized dextran (Dex-SH). Distribution of ESCs in 3-D was monitored by confocal microscopy. Viability and proliferation of encapsulated cells during long-term culture were determined by propidium iodide as well as direct cell counts and PrestoBlue (PB) assays. Genetic expression of pluripotency markers (Oct4, Nanog, Klf4, and Sox2) in ESCs grown under 2-D and 3-D culture conditions was examined by quantitative real-time polymerase chain reaction. Protein expression of selected stemness markers was determined by two different methods, immunofluorescence staining (Oct4 and Nanog) and western blot analysis (Oct4, Nanog, and Klf4). Pluripotency of 3-D scaffold grown ESCs was analyzed by in vivo teratoma assay and in vitro differentiation via embryoid bodies into cells of all three germ layers.RESULTS: Self-assembling scaffolds encapsulating ESCs for 3-D culture without the loss of cell viability were prepared by mixing PEG-4-Acr and Dex-SH (1:1 v/v) to a final concentration of 5% (w/v). Scaffold integrity was dependent on the degree of thiol substitution of Dex-SH and cell concentration. Scaffolds prepared using Dex-SH with 7.5% and 33% thiol substitution and incubated in culture medium maintained their integrity for 11 and 13 d without cells and 22 ± 5 d and 37 ± 5 d with cells, respectively. ESCs formed compact colonies, which progressively increased in size over time due to cell proliferation as determined by confocal microscopy and PB staining. 3-D scaffold cultured ESCs expressed significantly higher levels (P < 0.01) of Oct4, Nanog, and Kl4, showing a 2.8, 3.0 and 1.8 fold increase, respectively, in comparison to 2-D grown cells. A similar increase in the protein expression levels of Oct4, Nanog, and Klf4 was observed in 3-D grown ESCs. However, when 3-D cultured ESCs were subsequently passaged in 2-D culture conditions, the level of these pluripotent markers was reduced to normal levels. 3-D grown ESCs produced teratomas and yielded cells of all three germ layers, expressing brachyury (mesoderm), NCAM (ectoderm), and GATA4 (endoderm) markers. Furthermore, these cells differentiated into osteogenic, chondrogenic, myogenic, and neural lineages expressing Col1, Col2, Myog, and Nestin, respectively.CONCLUSION: This novel 3-D culture system demonstrated long-term maintenance of mouse ESCs without the routine passaging and manipulation necessary for traditional 2-D cell propagation.  相似文献   

17.
Human embryonic stem cells(hESCs) can self-renew indefinitely and differentiate into all cell types in the human body.Therefore,they are valuable in regenerative medicine,human developmental biology and drug discovery.A number of hESC lines have been derived from the Chinese population, but limited of them are available for research purposes.Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin.These hESCs express alkaline phosphatase and hE...  相似文献   

18.
The aim of this study was to determine whether the number of passages affected the developmental pluripotency of embryonic stem (ES) cells as measured by the attainment of adult fertile mice derived from embryonic stem (ES) cell/tetraploid embryo complementation. Thirty-six newborns were produced by the aggregation of tetraploid embryos and hybrid ES cells after various numbers of passages. These newborns were entirely derived from ES cells as judged by microsatellite DNA, coat-color phenotype, and germline transmission. Although 15 survived to adulthood, 17 died of respiratory failure, and four were eaten by their foster mother. From the 15 mice that reached adulthood and that could reproduce, none arose from ES cells at passage level 15 or more. All 15 arose from cells at passages 3–11. Our results demonstrate that the number of passages affects the developmental pluripotency of ES cells. This work was supported by the National Natural Science Foundation of China (grant no. 30571336) and the President Foundation of the Agricultural University of Hebei.  相似文献   

19.
The study of embryonic stem cells is in the spotlight in many laboratories that study the structure and function of chromatin and epigenetic processes. The key properties of embryonic stem cells are their capacity for self-renewal and their pluripotency. Pluripotent stem cells are able to differentiate into the cells of all three germ layers, and because of this property they represent a promising therapeutic tool in the treatment of diseases such as Parkinson’s disease and diabetes, or in the healing of lesions after heart attack. As the basic nuclear unit, chromatin is responsible for the regulation of the functional status of cells, including pluripotency and differentiation. Therefore, in this review we discuss the functional changes in chromatin during differentiation and the correlation between epigenetics events and the differentiation potential of embryonic stem cells. In particular we focus on post-translational histone modification, DNA methylation and the heterochromatin protein HP1 and its unique function in mouse and human embryonic stem cells.  相似文献   

20.
Although mouse embryonic stem cell lines (mESCs) have been established since 1981, systematic studies about chromosomal changes during culture are lacking. In this study, we report the results of a cytogenetic analysis performed on three mESC lines (named UPV02, UPV06 and UPV08) cultured for a period of 3 months. At time intervals, the variation of the chromosome number together with the expression of markers of the undifferentiated status, i.e., OCT-4, SSEA-1, FOM-1 and alkaline phosphatase activity, were determined. The three mESC lines showed a progressive loss of euploid metaphases during the 3 months period of culture. Chromosome abnormalities were accumulated at the latest passages analysed. Metacentric chromosomes were the most frequent chromosome abnormality observed throughout the period of culture. Interestingly, in coincidence with, or few passages after, the drop of euploidy, the alkaline phosphatase activity was partially or totally lost, whereas the OCT-4, SSEA-1 and FOM-1 stem markers were always positive throughout the period of culture. Our results remark the necessity to perform the karyotype analysis during culture in order to develop new culture conditions to maintain the correct chromosome complement in long-term culture of mESC lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号