首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T cell activation through the Ag receptor (TCR) requires sustained signaling from signalosomes within lipid raft microdomains in the plasma membrane. In a proteomic analysis of lipid rafts from human T cells, we identified stomatin-like protein (SLP)-2 as a candidate molecule involved in T cell activation through the Ag receptor. In this study, we show that SLP-2 expression in human primary lymphocytes is up-regulated following in vivo and ex vivo activation. In activated T cells, SLP-2 interacts with components of TCR signalosomes and with polymerized actin. More importantly, up-regulation of SLP-2 expression in human T cell lines and primary peripheral blood T cells increases effector responses, whereas down-regulation of SLP-2 expression correlates with loss of sustained TCR signaling and decreased T cell activation. Our data suggest that SLP-2 is an important player in T cell activation by ensuring sustained TCR signaling, which is required for full effector T cell differentiation, and point to SLP-2 as a potential target for immunomodulation.  相似文献   

2.
This study addresses the interactions between the adaptor protein Shb and components involved in T cell signalling, including SLP-76, Gads, Vav and ZAP70. We show that both SLP-76 and ZAP70 co-immunoprecipitate with Shb in Jurkat T cells and that Shb and Vav co-immunoprecipitate when cotransfected in COS cells. We also demonstrate, utilizing fusion protein constructs, that SLP-76, Gads and Vav associate independently of each other to different domains or regions, of Shb. Overexpression of an SH2 domain-defective Shb causes diminished phosphorylation of SLP-76 and Vav and consequently decreased activation of c-Jun kinase upon T cell receptor (TCR) stimulation. Shb was also found to localize to glycolipid-enriched membrane microdomains (GEMs), also called lipid rafts, after TCR stimulation. Our results indicate that upon TCR stimulation, Shb is targeted to these lipid rafts where Shb aids in recruiting the SLP-76-Gads-Vav complex to the T cell receptor zeta-chain and ZAP70.  相似文献   

3.
4.
Stomatin-like protein 2 (SLP-2) is a mainly mitochondrial protein that is widely expressed and is highly conserved across evolution. We have previously shown that SLP-2 binds the mitochondrial lipid cardiolipin and interacts with prohibitin-1 and -2 to form specialized membrane microdomains in the mitochondrial inner membrane, which are associated with optimal mitochondrial respiration. To determine how SLP-2 functions, we performed bioenergetic analysis of primary T cells from T cell-selective Slp-2 knockout mice under conditions that forced energy production to come almost exclusively from oxidative phosphorylation. These cells had a phenotype characterized by increased uncoupled mitochondrial respiration and decreased mitochondrial membrane potential. Since formation of mitochondrial respiratory chain supercomplexes (RCS) may correlate with more efficient electron transfer during oxidative phosphorylation, we hypothesized that the defect in mitochondrial respiration in SLP-2-deficient T cells was due to deficient RCS formation. We found that in the absence of SLP-2, T cells had decreased levels and activities of complex I-III2 and I-III2-IV1-3 RCS but no defects in assembly of individual respiratory complexes. Impaired RCS formation in SLP-2-deficient T cells correlated with significantly delayed T cell proliferation in response to activation under conditions of limiting glycolysis. Altogether, our findings identify SLP-2 as a key regulator of the formation of RCS in vivo and show that these supercomplexes are required for optimal cell function.  相似文献   

5.
Quintana A  Hoth M 《Cell calcium》2012,52(1):57-63
Energy supply is the most prominent function of mitochondria, but in addition, mitochondria are indispensable for a multitude of other important cellular functions including calcium (Ca(2+)) signaling and buffering, the supply of metabolites and the sequestration of apoptotic factors. The efficiency of those functions highly depends on the proper positioning of mitochondria within the cytosol. In lymphocytes, mitochondria preferentially localize into the vicinity (~200nm) of the immune synapse (IS). This localization is regulated by motor-based cytoskeleton-mediated transport, the fusion/fission dynamics of mitochondria, and probably also through tethering with the ER. IS formation also induces the accumulation of CRAC/ORAI1 Ca(2+) channels, the CRAC/ORAI channel activator STIM1, K(+) channels and plasma membrane Ca(2+) ATPase (PMCA) within the IS. Such a large agglomeration of Ca(2+) binding organelles and proteins highlights the IS as a critical cellular compartment for Ca(2+) dependent lymphocyte activation. At the IS, Ca(2+) microdomains generated beneath open CRAC/ORAI channels provide a rapid, robust and reliable mechanism for driving cellular responses in mast cells and T cells. Here, we discuss the relevance of motor-based mitochondrial transport, fusion, fission and tethering for mitochondrial localization in T cells and the importance of subplasmalemmal mitochondria to control local CRAC/ORAI1-dependent Ca(2+) microdomains at the IS for efficient T lymphocyte activation.  相似文献   

6.
Stomatin-like protein 2 (SLP-2) is a widely expressed mitochondrial inner membrane protein of unknown function. Here we show that human SLP-2 interacts with prohibitin-1 and -2 and binds to the mitochondrial membrane phospholipid cardiolipin. Upregulation of SLP-2 expression increases cardiolipin content and the formation of metabolically active mitochondrial membranes and induces mitochondrial biogenesis. In human T lymphocytes, these events correlate with increased complex I and II activities, increased intracellular ATP stores, and increased resistance to apoptosis through the intrinsic pathway, ultimately enhancing cellular responses. We propose that the function of SLP-2 is to recruit prohibitins to cardiolipin to form cardiolipin-enriched microdomains in which electron transport complexes are optimally assembled. Likely through the prohibitin functional interactome, SLP-2 then regulates mitochondrial biogenesis and function.  相似文献   

7.
T cell membrane receptors and signaling molecules assemble at the immunological synapse (IS) in a supramolecular activation cluster (SMAC), organized into two differentiated subdomains: the central SMAC (cSMAC), with the TCR, Lck, and linker for activation of T cells (LAT), and the peripheral SMAC (pSMAC), with adhesion molecules. The mechanism of protein sorting to the SMAC subdomains is still unknown. MAL forms part of the machinery for protein targeting to the plasma membrane by specialized mechanisms involving condensed membranes or rafts. In this article, we report our investigation of the dynamics of MAL during the formation of the IS and its role in SMAC assembly in the Jurkat T cell line and human primary T cells. We observed that under normal conditions, a pool of MAL rapidly accumulates at the cSMAC, where it colocalized with condensed membranes, as visualized with the membrane fluorescent probe Laurdan. Mislocalization of MAL to the pSMAC greatly reduced membrane condensation at the cSMAC and redistributed machinery involved in docking microtubules or transport vesicles from the cSMAC to the pSMAC. As a consequence of these alterations, the raft-associated molecules Lck and LAT, but not the TCR, were missorted to the pSMAC. MAL, therefore, regulates membrane order and the distribution of microtubule and transport vesicle docking machinery at the IS and, by doing so, ensures correct protein sorting of Lck and LAT to the cSMAC.  相似文献   

8.
Cell polarization enables restriction of signalling into microdomains. Polarization of lymphocytes following formation of a mature immunological synapse (IS) is essential for calcium-dependent T-cell activation. Here, we analyse calcium microdomains at the IS with total internal reflection fluorescence microscopy. We find that the subplasmalemmal calcium signal following IS formation is sufficiently low to prevent calcium-dependent inactivation of ORAI channels. This is achieved by localizing mitochondria close to ORAI channels. Furthermore, we find that plasma membrane calcium ATPases (PMCAs) are re-distributed into areas beneath mitochondria, which prevented PMCA up-modulation and decreased calcium export locally. This nano-scale distribution-only induced following IS formation-maximizes the efficiency of calcium influx through ORAI channels while it decreases calcium clearance by PMCA, resulting in a more sustained NFAT activity and subsequent activation of T cells.  相似文献   

9.
Sustained Ca(2+) influx through plasma membrane Ca(2+) released-activated Ca(2+) (CRAC) channels is essential for T cell activation. Since inflowing Ca(2+) inactivates CRAC channels, T cell activation is only possible if Ca(2+)-dependent inactivation is prevented. We have previously reported that sustained Ca(2+) influx through CRAC channels requires both mitochondrial Ca(2+) uptake and mitochondrial translocation towards the plasma membrane in order to prevent Ca(2+)-dependent channel inactivation. Here, we show that morphological changes following formation of the immunological synapse (IS) modulate Ca(2+) influx through CRAC channels. Cell shape changes were dependent on the actin cytoskeleton, and they sustained Ca(2+) entry by bringing mitochondria and the plasma membrane in closer proximity. The increased percentage of mitochondria beneath the plasma membrane following shape changes occurred in all 3 dimensions and correlated with an increase in the amplitude of Ca(2+) signals. The shape change-dependent mitochondrial localization close to the plasma membrane prevented CRAC channel inactivation even in T cells in which dynein motor protein-dependent mitochondria movements towards the plasma membrane were completely abolished, highlighting the importance of the shape change-dependent control of Ca(2+) influx. Our results suggest that morphological changes do not only facilitate an efficient contact with antigen presenting cells but also strongly modulate Ca(2+) dependent T cell activation.  相似文献   

10.
We have previously shown that a synthetic peptide termed core peptide (CP), which corresponds to a sequence within the transmembrane domain of the alpha chain of the T cell antigen receptor (TCR), can inhibit IL-2 production in antigen-stimulated T cells and can suppress inflammation in several T cell-mediated animal models of disease. As the first step in determining the mechanism of CP action, we examined the association of CP with the plasma membrane of human T cells using confocal microscopy. A homogeneous distribution of CP was observed in the plasma membrane of human T cells. This membrane localization was dependent on the presence of positive charges in the CP sequence. CP analogs, containing either neutral or negatively charged amino acids in place of the positive amino acid charges, did not localize within TCR membranes. Following antibody-induced TCR clustering, there was specific colocalization of CP with surface TCR. No association was observed with other cell surface receptors when similarly clustered. Since TCR activation leads to an increased movement of the receptor complex to cholesterol/glycosphingolipid (GSL) plasma membrane microdomains (rafts) we examined whether the association of CP with TCR was raft-driven. TCR clustering led only to a partial colocalization of TCRs with raft GSL, ganglioside GM1, and a complete colocalization of CP with TCRs. We conclude that CP associates specifically with plasma membrane TCRs and not raft lipids.  相似文献   

11.
The interaction between a T cell and an antigen-presenting cell (APC) can trigger a signaling response that leads to T cell activation. Prior studies have shown that ligation of the T cell receptor (TCR) triggers a signaling cascade that proceeds through the coalescence of TCR and various signaling molecules (e.g., the kinase Lck and adaptor protein LAT [linker for T cell activation]) into microdomains on the plasma membrane. In this study, we investigated another ligand–receptor interaction (CD58–CD2) that facilities T cell activation using a model system consisting of Jurkat T cells interacting with a planar lipid bilayer that mimics an APC. We show that the binding of CD58 to CD2, in the absence of TCR activation, also induces signaling through the actin-dependent coalescence of signaling molecules (including TCR-ζ chain, Lck, and LAT) into microdomains. When simultaneously activated, TCR and CD2 initially colocalize in small microdomains but then partition into separate zones; this spatial segregation may enable the two receptors to enhance signaling synergistically. Our results show that two structurally distinct receptors both induce a rapid spatial reorganization of molecules in the plasma membrane, suggesting a model for how local increases in the concentration of signaling molecules can trigger T cell signaling.  相似文献   

12.
Lateral mobility and spatial organization of proteins within the plasma membrane are likely to mediate the initial events coordinating T cell activation. Lipid rafts, distinct cholesterol/sphingolipid-rich membrane microdomains, provide a mechanism for this regulation by concentrating or excluding signaling proteins. We demonstrate in peripheral blood T cell lymphoblasts that immediate early phosphotyrosine signal transduction through the TCR complex is functionally dependent on a distinct population of lipid rafts. Specifically, cholesterol extraction destabilizes the membrane microdomains containing Lck, while the rafts containing the adapter protein linker for activation of T cells remain intact. Heterogeneity in the partitioning of these proteins in resting cells was confirmed by immunoelectron microscopy. After T cell activation, both Lck and the linker for activation of T cells colocalize to 50-100 nm microdomains in the plasma membrane, indicating that sequestration of these proteins into distinct lipid rafts may function to regulate the initiation of T cell signal transduction.  相似文献   

13.
Ceramide is a key lipid mediator of cellular processes such as differentiation, proliferation, growth arrest and apoptosis. During apoptosis, ceramide is produced within the plasma membrane. Although recent data suggest that the generation of intracellular ceramide increases mitochondrial permeability, the source of mitochondrial ceramide remains unknown. Here, we determine whether a stress-mediated plasmalemmal pool of ceramide might become available to the mitochondria of apoptotic cells. We have previously established annexin A1--a member of a family of Ca(2+) and membrane-binding proteins--to be a marker of ceramide platforms. Using fluorescently tagged annexin A1, we show that, upon its generation within the plasma membrane, ceramide self-associates into platforms that subsequently invaginate and fuse with mitochondria. An accumulation of ceramide within the mitochondria of apoptotic cells was also confirmed using a ceramide-specific antibody. Electron microscopic tomography confirmed that upon the formation of ceramide platforms, the invaginated regions of the plasma membrane extend deep into the cytoplasm forming direct physical contacts with mitochondrial outer membranes. Ceramide might thus be directly transferred from the plasma membrane to the mitochondrial outer membrane. It is conceivable that this "kiss-of-death" increases the permeability of the mitochondrial outer membrane thereby triggering apoptosis.  相似文献   

14.
Previously, we identified p85, a subunit of PI3K, as one of the molecules that interacts with the N-terminal region of Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76). We also demonstrated that tyrosine phosphorylation either at the 113 and/or 128 position is sufficient for the association of SLP-76 with the Src homology 2 domain near the N terminus of p85. The present study further examines the role of the association of these two molecules on the activation of PI3K signaling cascade. Experiments were done to determine the role of SLP-76, either wild-type, tyrosine mutants, or membrane-targeted forms of various SLP-76 constructs, on the membrane localization and phosphorylation of Akt, which is an event downstream of PI3K activation. Reconstitution studies with these various SLP-76 constructs in a Jurkat variant cell line that lacks SLP-76 or linker for activation of T cells (LAT) show that the activation of PI3K pathway following TCR ligation requires both SLP-76 and LAT adaptor proteins. The results suggest that SLP-76 associates with p85 after T cell activation and that LAT recruits this complex to the membrane, leading to Akt activation.  相似文献   

15.
T cell activation is associated with active clustering of relevant molecules in membrane microdomains defined as the supramolecular activation cluster. The contact area between these regions on the surface of T cells and APC is defined as the immunological synapse. It has been recently shown that preclustering of MHC-peptide complexes in membrane microdomains on the APC surface affects the efficiency of immune synapse formation and the related T cell activation. Disruption of such clusters may reduce the efficiency of stimulation. We describe here an entirely artificial system for Ag-specific, ex vivo stimulation of human polyclonal T cells (artificial APC (aAPC)). aAPC are based on artificial membrane bilayers containing discrete membrane microdomains encompassing T cell ligands (i.e., appropriate MHC-peptide complexes in association with costimulatory molecules). We show here that preclustering of T cell ligands triggered a degree of T cell activation significantly higher than the one achieved when we used either soluble tetramers or aAPC in which MHC-peptide complexes were uniformly distributed within artificial bilayer membranes. This increased efficiency in stimulation was mirrored by increased translocation from the cytoplasm to the membrane of protein kinase theta, a T cell signaling molecule that colocalizes with the TCR within the supramolecular activation cluster, thus indicating efficient engagement of T cell activation pathways. Engineered aAPC may have immediate application for basic and clinical immunology studies pertaining to modulation of T cells ex vivo.  相似文献   

16.
Ras activation is critical for T-cell development and function, but the specific roles of the different Ras isoforms in T-lymphocyte function are poorly understood. We recently reported T-cell receptor (TCR) activation of ectopically expressed H-Ras on the the Golgi apparatus of T cells. Here we studied the isoform and subcellular compartment specificity of Ras signaling in Jurkat T cells. H-Ras was expressed at much lower levels than the other Ras isoforms in Jurkat and several other T-cell lines. Glutathione S-transferase-Ras-binding domain (RBD) pulldown assays revealed that, although high-grade TCR stimulation and phorbol ester activated both N-Ras and K-Ras, low-grade stimulation of the TCR resulted in specific activation of N-Ras. Surprisingly, whereas ectopically expressed H-Ras cocapped with the TCRs in lipid microdomains of the Jurkat plasma membrane, N-Ras did not. Live-cell imaging of Jurkat cells expressing green fluorescent protein-RBD, a fluorescent reporter of GTP-bound Ras, revealed that N-Ras activation occurs exclusively on the Golgi apparatus in a phospholipase Cgamma- and RasGRP1-dependent fashion. The specificity of N-Ras signaling downstream of low-grade TCR stimulation was dependent on the monoacylation of the hypervariable membrane targeting sequence. Our data show that, in contrast to fibroblasts stimulated with growth factors in which all three Ras isoforms become activated and signaling occurs at both the plasma membrane and Golgi apparatus, Golgi-associated N-Ras is the critical Ras isoform and intracellular pool for low-grade TCR signaling in Jurkat T cells.  相似文献   

17.
Nonreceptor protein tyrosine kinases and associated substrates play a pivotal role in Ag receptor stimulation of resting cells and in the initiation of activation-induced cell death (AICD) of preactivated T cells. CD4-associated p56lck has been implicated not only in the activation of primary T cells, but also in the inhibition of T cell responses. We have previously shown that CD4+ T cell clones can be rescued from AICD when surface CD4 is engaged before the TCR stimulus. In this study, we show that prevention of AICD is associated with a CD4-dependent inhibition of TCR-triggered tyrosine phosphorylation of the Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76) and Vav. We provide evidence for a SLP-76 interaction with Src homology 3 domains of p56lck and identify amino acids 185-194 of SLP-76 as relevant docking site. In view of the multiple functions of p56lck and SLP-76/Vav in the initiation of TCR/CD3/CD4 signaling, we propose a model for the CD4-dependent inhibition of TCR signaling and AICD of preactivated T cells. Our data suggest that preformed activation complexes of adapter proteins and enzymes in the vicinity of the CD4/p56lck complex are no longer available for the TCR signal when CD4 receptors are engaged before TCR stimulation.  相似文献   

18.
T cell antigen receptor (TCR) engagement results in protein-tyrosine kinase activation which initiates signaling cascades leading to induction of the interleukin-2 gene. Previous studies identified two substrates of the TCR-induced protein-tyrosine kinases, SH2 domain-containing leukocyte specific protein of 76 kDa (SLP-76) and SLP-76-associated phosphoprotein of 130 kDa (SLAP-130). While SLP-76 appears to couple the TCR with downstream signals, SLAP-130 may play a negative regulatory role in T cell activation. In this study, we demonstrate that consistent with its ability to abrogate the SLP-76 augmentation of TCR-induced activation of the NFAT/AP1 region of the interleukin-2 promoter, overexpression of SLAP-130 also interferes with the rescue of signaling in SLP-76-deficient Jurkat cells in co-transfection experiments. The effect of SLAP-130 on SLP-76 function is specific for regulating TCR-induced ERK activation, but not phospholipase Cgamma 1 phosphorylation. By generating both deletion and point mutants of SLAP-130, we identified tyrosine 559 as critical for the interaction between SLP-76 and SLAP-130. We show that mutation of this residue in context of full-length SLAP-130 diminishes the ability of SLAP-130 to abrogate SLP-76 function. These data suggest that the SLAP-130/SLP-76 association is important for the negative regulatory role that SLAP-130 appears to play in T cell signaling.  相似文献   

19.
SLP-76 (Src homology (SH) 2-domain-containing leukocyte protein of 76 kDa) and FYB/SLAP (FYN-T-binding protein/SLP-76-associated protein) are two hemopoietic cell-specific adaptor proteins downstream of TCR-activated protein tyrosine kinases. SLP-76 has been implicated as an essential component in T cell signaling. FYB is selectively phosphorylated by FYN-T, providing a template for the recruitment of FYN-T and SLP-76 SH2 domains. Coexpression of FYN-T, FYB, and SLP-76 can synergistically up-regulate IL-2 production in T cells upon TCR ligation. In this report, we show that two tyrosines, Tyr595 and Tyr651, of FYB are major sites of phosphorylation by FYN-T and mediate binding to SLP-76 in Jurkat T cells. Furthermore, the synergistic up-regulation of IL-2 promoter activity in the FYN-T-FYB-SLP-76 pathway is contingent upon the interaction between FYB and SLP-76, but not the interaction between FYB and FYN-T. These observations define a pathway by which SLP-76 interacts with downstream components in the up-regulation of T cell cytokine production.  相似文献   

20.
B cell linker protein (BLNK) is a SLP-76-related adaptor protein essential for signal transduction from the BCR. To identify components of BLNK-associated signaling pathways, we performed a phosphorylation-dependent yeast two-hybrid analysis using BLNK probes. Here we report that the serine/threonine kinase hematopoietic progenitor kinase 1 (HPK1), which is activated upon antigen-receptor stimulation and which has been implicated in the regulation of MAP kinase pathways, interacts physically and functionally with BLNK in B cells and with SLP-76 in T cells. This interaction requires Tyr(379) of HPK1 and the Src homology 2 (SH2) domain of BLNK/SLP-76. Via homology modeling, we defined a consensus binding site within ligands for SLP family SH2 domains. We further demonstrate that the SH2 domain of SLP-76 participates in the regulation of AP-1 and NFAT activation in response to T cell receptor (TCR) stimulation and that HPK1 inhibits AP-1 activation in a manner partially dependent on its interaction with SLP-76. Our data are consistent with a model in which full activation of HPK1 requires its own phosphorylation on tyrosine and subsequent interaction with adaptors of the SLP family, providing a mechanistic basis for the integration of this kinase into antigen receptor signaling cascades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号