首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial encoding in mountain chickadees: features overshadow geometry   总被引:4,自引:0,他引:4  
Encoding the global geometric shape of an enclosed environment is a principal means of orientation in human and non-human animals. Animals spontaneously encode the geometry of an enclosure even when featural information is available. Although features can be used, they typically do not overshadow geometry. However, all previously tested organisms have been reared in human-made environments with salient geometrical cues. Here, we show that wild-caught mountain chickadees (Poecile gambeli) do not spontaneously encode the geometry of an enclosure when salient features are present near the goal. However, chickadees trained without salient features encode geometric information, but this encoding is overshadowed by features.  相似文献   

2.
Studies have shown that animals, including humans, use the geometric properties of environments to orient. It has been proposed that orientation is accomplished primarily by encoding the principal axes (i.e., global geometry) of an environment. However, recent research has shown that animals use local information such as wall length and corner angles as well as local shape parameters (i.e., medial axes) to orient. The goal of the current study was to determine whether adult humans reorient according to global geometry based on principal axes or whether reliance is on local geometry such as wall length and sense information or medial axes. Using a virtual environment task, participants were trained to select a response box located at one of two geometrically identical corners within a featureless rectangular-shaped environment. Participants were subsequently tested in a transformed L-shaped environment that allowed for a dissociation of strategies based on principal axes, medial axes and local geometry. Results showed that participants relied primarily on a medial axes strategy to reorient in the L-shaped test environment. Importantly, the search behaviour of participants could not be explained by a principal axes-based strategy.  相似文献   

3.
Modeling the effects of enclosure size on geometry learning   总被引:1,自引:1,他引:0  
Several recent studies have shown that chickens, fish, and humans trained to find a reward in a corner of a rectangular enclosure with distinctive features rely more on the geometry of the enclosure in small enclosures and rely more on the features in large enclosures. Here, these results are modeled using a recent associative model of geometry learning [Miller, N.Y., Shettleworth, S.J., 2007. Learning about environmental geometry: an associative model. J. Exp. Psychol. Anim. B 33, 191–212]. By adjusting the salience of either geometric or featural information or both the model is capable of reproducing much of the data on the effects of enclosure size on geometry learning.  相似文献   

4.
Human participants searched in a dynamic three-dimensional virtual-environment rectangular enclosure for a distinctly colored bin located in one of the four corners. During test trials, all bins were rendered identical in color, and the shape of the rectangular search space either remained the same or was modified to a relatively sized contracted rectangle, an expanded rectangle, or a square. Participants made one choice response during test trials. In the rectangular enclosures, more of participants’ choice responses were allocated to the geometrically correct corners than to the geometrically incorrect corners. In the square enclosure, participants’ choice responses were allocated equivalently to each of the four corners. Results replicate previous enclosure size studies demonstrating encoding of enclosure geometry with human and non-human animal subjects conducted in real environments and extend these results to include encoding of relative enclosure geometry. Results are discussed with respect to theoretical accounts of geometry learning.  相似文献   

5.
In two experiments, human participants searched in dynamic three-dimensional virtual-environment rectangular enclosures. Unlike previous studies involving learning of features and geometry, we trained features and geometry separately before placing them in conflict. Specifically, participants learned to respond to rewarded features located along the principle axis of a rectangular search space and to respond to rewarded geometry of a rectangular search space in separate training phases followed by a single test trial. During the test trial, features and geometry were placed in conflict by situating rewarded bins during feature training in unrewarded geometric corners from geometry training and unrewarded bins during feature training in rewarded geometric corners from geometry training. Results of Experiment 1 indicated that although all participants learned features and geometry at an equivalent rate and to an equivalent level, performance during the test trial indicated no preferential responding to features or geometry. However, choice reaction time was significantly longer during the test trial compared to that of last feature and last geometry training trials. Experiment 2 attempted to dissociate information content of features and geometry from their acquired associative strength by rewarding only one geometric corner during geometry training. Results of Experiment 2 indicated that although features had presumably acquired greater associative strength relative to that of geometry by the end of training, performance during the test trial indicated no preferential responding to features or geometry. As in Experiment 1, choice reaction time was significantly longer during the test trial compared to that of last feature and last geometry training trials. Collectively, results seem to provide converging evidence against a view-based matching account of spatial learning, appear inconsistent with standard associative-based accounts of spatial learning, and suggest that information content of spatial cues may play an important role in spatial learning.  相似文献   

6.
The macroscopic, three-dimensional surface layout geometry of an enclosure apparently provides a different contribution for spatial reorientation than the geometric cues associated with freestanding objects arranged in arrays with similar geometric shape. Here, we showed that a unitary spatial representation can account for the capability of animals to reorient both by extended surfaces and discrete objects in a small-scale spatial task. We trained domestic chicks to locate a food-reward from an opening on isolated cylinders arranged either in a geometrically uninformative (square-shaped) or informative (rectangular-shaped) arrays. The arrays were located centrally within a rectangular-shaped enclosure. Chicks trained to access the reward from a fixed position of openings proved able to reorient according to the geometric cues specified by the shape of the enclosure in all conditions. Chicks trained in a fixed position of opening with geometric cues provided both by the arena and the array proved able to reorient according to each shape separately. However, chicks trained to access the reward from a variable position of openings failed to reorient. The results suggest that the physical constrains associated with the presence of obstacles in a scene, rather than their apparent visual extension, are crucial for spatial reorientation.  相似文献   

7.
Unlike investigations of animals’ use of spatial cues such as landmarks, studies of sensitivity to the geometry of surfaces in an enclosure have proceeded mostly as an attempt to explain a laboratory finding with few direct tests of how animals use such a cue in nature. In this brief review, I discuss the current debate over whether global or local information from the enclosure drives the typical rotational error pattern in such studies. A consideration of the form and function of geometric cues in natural settings suggests that the natural boundaries for which arena walls are considered analogous might better be thought as landmarks. With a clearer picture of what geometric information is and how it might be used in nature, the generality of findings from laboratory studies of geometry enclosure can be better assessed.  相似文献   

8.
Insect navigation is thought to be based on an egocentric reference system which relates vector information derived from path integration to views of landmarks experienced en route and at the goal. Here we show that honeybees also possess an allocentric form of spatial memory which allows localization of multiple places relative to the intended goal, the hive. The egocentric route memory, which is called the specialized route memory (SRM) here, initially dominates navigation when an animal is first trained to a feeding site and then released at an unexpected site and this is why it is the only reference system detected so far in experiments with bees. However, the SRM can be replaced by an allocentric spatial memory called the general landscape memory (GLM). The GLM is directly accessible to the honeybee (and to the experimenter) if no SRM exists, for example, if bees were not trained along a route before testing. Under these conditions bees return to the hive from all directions around the hive at a speed comparable to that of an equally long flight along a trained route. The flexible use of the GLM indicates that bees may store relational information on places, connections between landmarks and the hive and/or views of landmarks from different directions and, thus, the GLM may have a graph structure, at least with respect to one goal, i.e. the hive.  相似文献   

9.
In recent years, it has been shown that animals can localize the geometric center of an area by reference to the shape of the environment. We trained a group of mice (experimental group) to search for a pellet hidden under sand in the center of a square-shaped dry maze. Three weeks later, they were tested in a triangular enclosure half the size of the training area and a circular enclosure double the size of the training area to see transfer to these enclosures. We compared their searching behavior with that of subjects that had received no training. The results show that the experimental group searched the geometric center of each enclosure in both transfer tests, while the untrained control group walked along the walls. This indicates that the experimental group localized the center not by reference to the absolute distance from the corners but by equal distances from all walls (geometric center).  相似文献   

10.
Ditylum cells are enclosed in a rigid wall consisting of two "valves" (end walls) connected by "girdle bands." A hollow spine, the Labiate Process (LP), extends from each valve and a stable cytoplasmic strand connects its base with the nucleus. We investigated whether cells might possess "spatial determinants" for controlling their internal organization and wall morphogenesis. Upon plasmolysis, cells contracted into a spherical protoplast detached from the wall. Recovery was initiated by growing filopodia that "searched" the inside of the wall. Some attached to the inside corners, generating tension that could temporarily displace the protoplast. Others consolidated into the strand connecting nucleus with the LP. The protoplasts soon expanded and cells recovered: some divided immediately, the rest within 24 h. When recently divided cells were plasmolysed, their nascent valves were exocytosed. These were ignored by the filopodia during recovery. Later, protoplasts secreted a new valve, while the nascent valves were discarded. The interphase microtubule (MT) cytoskeleton radiates from a central Microtubule Center. A thicker bundle connects the nucleus to each LP. Plasmolysis destroyed the MT cytoskeleton; its re-establishment matched growth of the filopodia. The anti-MT drug oryzalin prevented filopodial extension while existing filopodia retracted, except those stabilized by attachment to the corners of the cell and the LP. Several anti-actin agents had relatively little effect. However, one, mycalolide B, caused the nucleus to be extruded from the protoplast by a bundle of MTs. We conclude that the geometry of the wall could provide spatial information to which the MT-cytoskeleton/filopodia respond.  相似文献   

11.
David W. Inouye 《Oecologia》1980,45(2):197-201
Summary The rates at which bumblebees of different proboscis lengths forage on flowers of a series of corolla tube lengths were determined. The results indicate significant correlations between proboscis length and time spent by bees on flowers. Bumblebees of long proboscis length can forage significantly faster than bees of shorter proboscis length on flowers with long corolla tubes. There is also evidence which suggests that bumblebees of short proboscis length prefer and are more efficient on short corolla tubes. These results support the use of proboscis length as a morphological indicator of resource utilization in bumblebees.  相似文献   

12.
【目的】逃离危险对集群生活的动物来说是一项重要挑战。白蚁是真社会性昆虫,群体密度较大。因此,白蚁可能进化出了特殊的策略集体逃离危险情境。【方法】本研究比较了实验室条件下台湾乳白蚁Coptotermes formosanus工蚁在不同形状容器(没有出口的圆形和方形容器)的逃遁行为,并调查了在有出口的情况下,台湾乳白蚁工蚁从圆形容器边缘、方形容器直角处和方形容器直角边中间的撤离效 率。【结果】在没有出口的情况下,受惊的台湾乳白蚁立即移动到圆形或方形容器的边缘区域并沿着容器的壁移动。然而,在方形容器的直角处,逃遁的台湾乳白蚁工蚁形成明显的堵塞(直角附近的白蚁密度显著高于其他区域,而移动速度显著低于其他区域的白蚁)。当容器上有出口时,大部分台湾乳白蚁工蚁分散在容器边缘,因此在出口位置周围未发现明显的堵塞。有趣的是,台湾乳白蚁工蚁逃出有出口的圆形容器的时间与从出口在直角附近的方形容器的无显著差异,但其从出口在直角边中间的方形容器的逃出时间更长。【结论】研究结果表明容器形状与出口位置均对台湾乳白蚁工蚁的逃遁行为与撤离效率造成影响。此外,白蚁使用了特殊的策略来避免多见于其他群居动物(如人类、小鼠等)的“快即慢”效应。由于白蚁工蚁没有视觉,研究白蚁的逃遁策略可为人群如何高效撤离可视度较低的危险环境提供启示。  相似文献   

13.
J Zhang  X Li  Y Song  J Liu 《PloS one》2012,7(7):e40390
Numerous studies with functional magnetic resonance imaging have shown that the fusiform face area (FFA) in the human brain plays a key role in face perception. Recent studies have found that both the featural information of faces (e.g., eyes, nose, and mouth) and the configural information of faces (i.e., spatial relation among features) are encoded in the FFA. However, little is known about whether the featural information is encoded independent of or combined with the configural information in the FFA. Here we used multi-voxel pattern analysis to examine holistic representation of faces in the FFA by correlating spatial patterns of activation with behavioral performance in discriminating face parts with face configurations either present or absent. Behaviorally, the absence of face configurations (versus presence) impaired discrimination of face parts, suggesting a holistic representation in the brain. Neurally, spatial patterns of activation in the FFA were more similar among correct than incorrect trials only when face parts were presented in a veridical face configuration. In contrast, spatial patterns of activation in the occipital face area, as well as the object-selective lateral occipital complex, were more similar among correct than incorrect trials regardless of the presence of veridical face configurations. This finding suggests that in the FFA faces are represented not on the basis of individual parts but in terms of the whole that emerges from the parts.  相似文献   

14.
Functional brain imaging in humans is beginning to reveal a network of brain regions that subserve topographical learning: the medial parietal lobe, the posterior cingulate gyrus, occipitotemporal areas, the parahippocampal gyrus and the right hippocampus. These findings illuminate the patient lesion literature where all of these brain regions have been implicated at one time or another in cases of topographical disorientation. Once topographical information is acquired, the neuroanatomy that supports its use from either episodic or semantic memory is similar to that activated during encoding. The specific contributions of extrahippocampal regions within the topographical memory system are being revealed, such as the role of the right parahippocampal gyrus in object-in-place encoding. The right hippocampus is clearly involved in processing spatial layouts over long as well as short time-courses, and participates in both the encoding and the retrieval of topographical memory. The ventromedial orbitofrontal cortex is recruited when information in the topographical memory system is not sufficient to produce direct navigation to a goal place.  相似文献   

15.
Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell–cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.  相似文献   

16.
In foraging and homing, desert ants of the genus Cataglyphis employ two different systems of navigation: a vector-based or dead-reckoning mechanism, depending on angles steered and distances travelled, and a landmark-based piloting mechanism. In these systems the ants use either celestial or terrestrial visual information, respectively. In behavioural experiments we investigated how long these types of information are preserved in the ant's memory, i.e. how long the ants are able to orient properly in either way. To answer this question, ants were tested in specific dead-reckoning and piloting situations, whereby the two vector components, direction and distance, were examined separately. The ability to follow a particular vector course vanishes rapidly. Information about a given homing direction is lost from the 6th day on (the time constant of the exponential memory decay function is τ = 4.5 days). The homing distances show a significantly higher dispersion from the 4th day on (τ = 2.5 days). Having learned a constellation of landmarks positioned at the corners of an equidistant triangle all ants were oriented properly after 10 days in captivity, and 64% of the ants exhibited extremely precise orientation performances even when tested after 20 days. Thus, the memory decay functions have about the same short time-course for information on distance and direction, i.e. information used for dead-reckoning. In contrast, landmark-based information used in pinpointing the nest entrance is stored over the entire lifetime of a Cataglyphis forager. Accepted: 18 January 1997  相似文献   

17.
Following spatial disorientation, animals can reorient themselves by relying on geometric cues (metric and sense) specified both by the macroscopic surface layout of an enclosed space and prominent visual landmarks in arrays. Whether spatial reorientation in arrays of landmarks is based on explicit representation of the geometric cues is a matter of debate. Here we trained homing pigeons (Columba livia) to locate a food-reward in a rectangular array of four identical or differently coloured pipes provided with four openings, only one of which allowed the birds to have access to the reward. Pigeons were trained either with a stable or a variable position of the opening on pipes, so that they could view the array either from the same or a variable perspective. Explicit mapping of configural geometry would predict successful reorientation irrespective of access condition. In contrast, we found that a stable view of the array facilitated spatial learning in homing pigeons, likely through the formation of snapshot-like memories.  相似文献   

18.
Computer based video games are receiving great interest as a means to learn and acquire new skills. As a novel approach to teaching navigation skills in the blind, we have developed Audio-based Environment Simulator (AbES); a virtual reality environment set within the context of a video game metaphor. Despite the fact that participants were naïve to the overall purpose of the software, we found that early blind users were able to acquire relevant information regarding the spatial layout of a previously unfamiliar building using audio based cues alone. This was confirmed by a series of behavioral performance tests designed to assess the transfer of acquired spatial information to a large-scale, real-world indoor navigation task. Furthermore, learning the spatial layout through a goal directed gaming strategy allowed for the mental manipulation of spatial information as evidenced by enhanced navigation performance when compared to an explicit route learning strategy. We conclude that the immersive and highly interactive nature of the software greatly engages the blind user to actively explore the virtual environment. This in turn generates an accurate sense of a large-scale three-dimensional space and facilitates the learning and transfer of navigation skills to the physical world.  相似文献   

19.
PURPOSE: Recently, some numerical and experimental studies of blood flow in large arteries have attempted to accurately replicate in vivo arterial geometries, while others have utilized simplified models. The objective of this study was to determine how much an anatomically realistic geometry can be simplified without the loss of significant hemodynamic information. METHOD: A human femoral-popliteal bypass graft was used to reconstruct an anatomically faithful finite element model of an end-to-side anastomosis. Nonideal geometric features of the model were removed in sequential steps to produce a series of successively simplified models. Blood flow patterns were numerically computed for each geometry, and the flow and wall shear stress fields were analyzed to determine the significance of each level of geometric simplification. RESULTS: The removal of small local surface features and out-of-plane curvature did not significantly change the flow and wall shear stress distributions in the end-to-side anastomosis. Local changes in arterial caliber played a more significant role, depending upon the location and extent of the change. The graft-to-host artery diameter ratio was found to be a strong determinant of wall shear stress patterns in regions that are typically associated with disease processes. CONCLUSIONS: For the specific case of an end-to-side anastomosis, simplified models provide sufficient information for comparing hemodynamics with qualitative or averaged disease locations, provided the "primary" geometric features are well replicated. The ratio of the graft-to-host artery diameter was shown to be the most important geometric feature. "Secondary" geometric features such as local arterial caliber changes, out-of-plane curvature, and small-scale surface topology are less important determinants of the wall shear stress patterns. However, if patient-specific disease information is available for the same arterial geometry, accurate replication of both primary and secondary geometric features is likely required.  相似文献   

20.
Landscape pattern metrics are widely used for predicting habitat and species diversity. However, the relationship between landscape pattern and species diversity is typically measured at a single spatial scale, even though both landscape pattern, and species occurrence and community composition are scale‐dependent. While the effects of scale on landscape pattern are well documented, the effects of scale on the relationships between spatial pattern and species richness and composition are not well known. Here, our main goal was to quantify the effects of cartographic scale (spatial resolution and extent) on the relationships between spatial pattern and avian richness and community structure in a mosaic of grassland, woodland, and savanna in central Wisconsin. Our secondary goal was to evaluate the effectiveness of a newly developed tool for spatial pattern analysis, multiscale contextual spatial pattern analysis (MCSPA), compared to existing landscape metrics. Landscape metrics and avian species richness had quadratic, exponential, or logarithmic relationships, and these patterns were generally consistent across two spatial resolutions and six spatial extents. However, the magnitude of the relationships was affected by both resolution and extent. At the finer resolution (10‐m), edge density was consistently the best predictor of species richness, followed by an MCSPA metric that measures the standard deviation of woody cover across extents. At the coarser resolution (30‐m), NDVI was the best predictor of species richness by far, regardless of spatial extent. Another MCSPA metric that denotes the average woody cover across extents, together with percent of woody cover, were always the best predictors of variation in avian community structure. Spatial resolution and extent had varying effects on the relationships between spatial pattern and avian community structure. We therefore conclude that cartographic scale not only affects measures of landscape pattern per se, but also the relationships among spatial pattern, species richness, and community structure, often in complex ways, which reduces the efficacy of landscape metrics for predicting the richness and diversity of organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号