首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.  相似文献   

2.
Microbial communities that deconstruct plant biomass have broad relevance in biofuel production and global carbon cycling. Biomass pretreatments reduce plant biomass recalcitrance for increased efficiency of enzymatic hydrolysis. We exploited these chemical pretreatments to study how thermophilic bacterial consortia adapt to deconstruct switchgrass (SG) biomass of various compositions. Microbial communities were adapted to untreated, ammonium fiber expansion (AFEX)-pretreated, and ionic-liquid (IL)-pretreated SG under aerobic, thermophilic conditions using green waste compost as the inoculum to study biomass deconstruction by microbial consortia. After microbial cultivation, gravimetric analysis of the residual biomass demonstrated that both AFEX and IL pretreatment enhanced the deconstruction of the SG biomass approximately 2-fold. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments and acetyl bromide-reactive-lignin analysis indicated that polysaccharide hydrolysis was the dominant process occurring during microbial biomass deconstruction, and lignin remaining in the residual biomass was largely unmodified. Small-subunit (SSU) rRNA gene amplicon libraries revealed that although the dominant taxa across these chemical pretreatments were consistently represented by members of the Firmicutes, the Bacteroidetes, and Deinococcus-Thermus, the abundance of selected operational taxonomic units (OTUs) varied, suggesting adaptations to the different substrates. Combining the observations of differences in the community structure and the chemical and physical structure of the biomass, we hypothesize specific roles for individual community members in biomass deconstruction.  相似文献   

3.
Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short‐term effects of wildfire to the long‐term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration in incubation studies. Taken together, these results indicate that reductions in fungal biomass in postfire soils and lower soil moisture in nonpermafrost soils reduced the potential of soil heterotrophs to decompose soil carbon. Although in the field increased rates of microbial respiration can be observed in postfire soils due to warmer soil conditions, reductions in fungal biomass and activity may limit rates of decomposition.  相似文献   

4.
Over the past quarter-century, microbiologists have used DNA sequence information to aid in the characterization of microbial communities. During the last decade, this has expanded from single genes to microbial community genomics, or metagenomics, in which the gene content of an environment can provide not just a census of the community members but direct information on metabolic capabilities and potential interactions among community members. Here we introduce a method for the quantitative characterization and comparison of microbial communities based on the normalization of metagenomic data by estimating average genome sizes. This normalization can relieve comparative biases introduced by differences in community structure, number of sequencing reads, and sequencing read lengths between different metagenomes. We demonstrate the utility of this approach by comparing metagenomes from two different marine sources using both conventional small-subunit (SSU) rRNA gene analyses and our quantitative method to calculate the proportion of genomes in each sample that are capable of a particular metabolic trait. With both environments, to determine what proportion of each community they make up and how differences in environment affect their abundances, we characterize three different types of autotrophic organisms: aerobic, photosynthetic carbon fixers (the Cyanobacteria); anaerobic, photosynthetic carbon fixers (the Chlorobi); and anaerobic, nonphotosynthetic carbon fixers (the Desulfobacteraceae). These analyses demonstrate how genome proportionality compares to SSU rRNA gene relative abundance and how factors such as average genome size and SSU rRNA gene copy number affect sampling probability and therefore both types of community analysis.  相似文献   

5.
The flow of metabolic energy is arguably the most fundamental property governing ecosystem structure. In many microbial communities, particularly those that inhabit environments with little input of exogenous organic matter such as submarine hydrothermal systems and deep subsurface environments, chemolithoautotrophic organisms generate most of the organic matter available to support heterotrophic growth. In these environments, inorganic chemical reactions constitute the main source of energy input to the system, and the conversion of chemical energy to biomass by chemolithoautotrophs exerts a prominent control on the size, composition, and trophic structure of the biological community. A rigorous accounting of energy flow would aid in understanding the potential biological productivity of chemolithoautotrophic communities and help clarify the limits to habitability in geothermal and subsurface environments. In a step towards achieving a more complete accounting of energy flow in such communities, we present here computations to quantify the amount of thermodynamic energy required to synthesize the molecular components of biomass and to compare the relative energy requirements under oxic and anoxic conditions. The results suggest that only about 10% or less of the overall energy consumed during growth by chemolithoautotrophs is transformed directly into biomass. In addition, the results indicate aerobic organisms require approximately 17 kJ (g cells)−1 more energy than anaerobes to synthesize the same biomass. This advantage may help explain why anaerobic organisms appear to yield greater biomass per unit energy input than aerobic organisms in laboratory growth studies, and why anaerobic micro-organisms can exist where the energy yield from catabolism is extremely low.  相似文献   

6.
7.
The ecological succession of microbes during cadaver decomposition has garnered interest in both basic and applied research contexts (e.g. community assembly and dynamics; forensic indicator of time since death). Yet current understanding of microbial ecology during decomposition is almost entirely based on plant litter. We know very little about microbes recycling carcass-derived organic matter despite the unique decomposition processes. Our objective was to quantify the taxonomic and functional succession of microbial populations in soils below decomposing cadavers, testing the hypotheses that a) periods of increased activity during decomposition are associated with particular taxa; and b) human-associated taxa are introduced to soils, but do not persist outside their host. We collected soils from beneath four cadavers throughout decomposition, and analyzed soil chemistry, microbial activity and bacterial community structure. As expected, decomposition resulted in pulses of soil C and nutrients (particularly ammonia) and stimulated microbial activity. There was no change in total bacterial abundances, however we observed distinct changes in both function and community composition. During active decay (7 - 12 days postmortem), respiration and biomass production rates were high: the community was dominated by Proteobacteria (increased from 15.0 to 26.1% relative abundance) and Firmicutes (increased from 1.0 to 29.0%), with reduced Acidobacteria abundances (decreased from 30.4 to 9.8%). Once decay rates slowed (10 - 23 d postmortem), respiration was elevated, but biomass production rates dropped dramatically; this community with low growth efficiency was dominated by Firmicutes (increased to 50.9%) and other anaerobic taxa. Human-associated bacteria, including the obligately anaerobic Bacteroides, were detected at high concentrations in soil throughout decomposition, up to 198 d postmortem. Our results revealed the pattern of functional and compositional succession in soil microbial communities during decomposition of human-derived organic matter, provided insight into decomposition processes, and identified putative predictor populations for time since death estimation.  相似文献   

8.
Refuse decomposition in landfills is a microbially mediated process that occurs primarily under anaerobic conditions. Because of limited moisture conditions, hydraulic transport as a means of cellular translocation within the landfill appears limited, especially during the initial stages of decomposition. Thus, microbial communities within the incoming refuse serve as a primary source of facultative and obligate anaerobic microorganisms that initiate refuse decomposition. Fresh residential refuse was collected five times over 26 months, and microbial communities in these samples were compared with those in individual refuse components and decomposed refuse. Bacterial and archaeal community structures were determined using T-RFLP. The Bacterial microbial community richness was correlated (r(2) = 0.91) with seasonal differences in ambient air temperature. Analysis of the results shows that fresh refuse is most likely not the source of methanogens in landfills. Microbial communities in the solid and leachate phases were different, indicating that both matrices must be considered when characterizing microbial diversity within a landfill.  相似文献   

9.
Global warming can affect all levels of biological complexity, though we currently understand least about its potential impact on communities and ecosystems. At the ecosystem level, warming has the capacity to alter the structure of communities and the rates of key ecosystem processes they mediate. Here we assessed the effects of a 4°C rise in temperature on the size structure and taxonomic composition of benthic communities in aquatic mesocosms, and the rates of detrital decomposition they mediated. Warming had no effect on biodiversity, but altered community size structure in two ways. In spring, warmer systems exhibited steeper size spectra driven by declines in total community biomass and the proportion of large organisms. By contrast, in autumn, warmer systems had shallower size spectra driven by elevated total community biomass and a greater proportion of large organisms. Community-level shifts were mirrored by changes in decomposition rates. Temperature-corrected microbial and macrofaunal decomposition rates reflected the shifts in community structure and were strongly correlated with biomass across mesocosms. Our study demonstrates that the 4°C rise in temperature expected by the end of the century has the potential to alter the structure and functioning of aquatic ecosystems profoundly, as well as the intimate linkages between these levels of ecological organization.  相似文献   

10.
Anaerobic digestion is a promising method for energy recovery through conversion of organic waste to biogas and other industrial valuables. However, to tap the full potential of anaerobic digestion, deciphering the microbial metabolic pathway activities and their underlying bioenergetics is required. In addition, the behavior of organisms in consortia along with the analytical abilities to kinetically measure their metabolic interactions will allow rational optimization of the process. This review aims to explore the metabolic bottlenecks of the microbial communities adopting latest advances of profiling and 13C tracer-based analysis using state of the art analytical platforms (GC, GC-MS, LC-MS, NMR). The review summarizes the phases of anaerobic digestion, the role of microbial communities, key process parameters of significance, syntrophic microbial interactions and the bottlenecks that are critical for optimal bioenergetics and enhanced production of valuables. Considerations into the designing of efficient synthetic microbial communities as well as the latest advances in capturing their metabolic cross talk will be highlighted. The review further explores how the presence of additives and inhibiting factors affect the metabolic pathways. The critical insight into the reaction mechanism covered in this review may be helpful to optimize and upgrade the anaerobic digestion system.  相似文献   

11.
Anaerobic digestion is a promising method for energy recovery through conversion of organic waste to biogas and other industrial valuables. However, to tap the full potential of anaerobic digestion, deciphering the microbial metabolic pathway activities and their underlying bioenergetics is required. In addition, the behavior of organisms in consortia along with the analytical abilities to kinetically measure their metabolic interactions will allow rational optimization of the process. This review aims to explore the metabolic bottlenecks of the microbial communities adopting latest advances of profiling and 13C tracer-based analysis using state of the art analytical platforms (GC, GC-MS, LC-MS, NMR). The review summarizes the phases of anaerobic digestion, the role of microbial communities, key process parameters of significance, syntrophic microbial interactions and the bottlenecks that are critical for optimal bioenergetics and enhanced production of valuables. Considerations into the designing of efficient synthetic microbial communities as well as the latest advances in capturing their metabolic cross talk will be highlighted. The review further explores how the presence of additives and inhibiting factors affect the metabolic pathways. The critical insight into the reaction mechanism covered in this review may be helpful to optimize and upgrade the anaerobic digestion system.  相似文献   

12.
以腾格里沙漠东南缘沙坡头人工固沙植被区典型植物种凋落物(小画眉草、藓类、油蒿叶片)为对象,运用凋落物分解袋法和高通量测序技术,分析了3种植物凋落物分解特征及其对土壤微生物群落的影响。结果表明: 分解时间和凋落物类型均显著影响分解速率,藓类分解最慢,13个月后质量损失比仅为15.4%,油蒿叶片和小画眉草的平均分解速率分别是藓类的4.9和3.4倍。经过11个月的分解,细菌群落的优势菌门为放线菌门和变形菌门,真菌群落的优势菌门是子囊菌门;藓类分解过程中,拟杆菌门和绿弯菌门的相对丰度显著增加,担子菌门的相对丰度显著降低。凋落物分解后,细菌和真菌群落物种多样性和丰富度显著增加,细菌群落组成在凋落物间变化不显著,真菌群落变化显著。凋落物的分解速率与细菌和真菌群落多样性及丰富度均呈负线性变化。植物多糖、全磷和土壤pH、微生物生物量氮、铵态氮含量是影响微生物群落结构的主要因子。凋落物分解改变了土壤微生物群落物种组成和种间相似性,显著增加了土壤中微生物群落的多样性和丰富度,促进了土壤生境的恢复。  相似文献   

13.
Aim  Although patterns are emerging for macroorganisms, we have limited understanding of the factors determining soil microbial community composition and productivity at large spatial extents. The overall objective of this study was to discern the drivers of microbial community composition at the extent of biogeographical provinces and regions. We hypothesized that factors associated with land use and climate would drive soil microbial community composition and biomass.
Location  Great Basin Province, Desert Province and California Floristic Province, California, USA.
Methods  Using phospholipid fatty acid analysis, we compared microbial communities across eight land-use types sampled throughout the State of California, USA ( n = 1117).
Results  The main factor driving composition and microbial biomass was land-use type, especially as related to water availability and disturbance. Dry soils were more enriched in Gram-negative bacteria and fungi, and wetter soils were more enriched in Gram-positive, anaerobic and sulphate-reducing bacteria. Microbial biomass was lowest in ecosystems with the wettest and driest soils. Disturbed soils had less fungal and more Gram-positive bacterial biomass than wildland soils. However, some factors known to influence microbial communities, such as soil pH and specific plant taxa, were not important here.
Main conclusions  Distinct microbial communities were associated with land-use types and disturbance at the regional extent. Overall, soil water availability was an important determinant of soil microbial community composition. However, because of the inclusion of managed and irrigated agricultural ecosystems, the effect of precipitation was not significant. Effects of environmental and management factors, such as flooding, tillage and irrigation, suggest that agricultural management can have larger effects on soil microbial communities than elevation and precipitation gradients.  相似文献   

14.
Soil microorganisms mediate many critical ecosystem processes. Little is known, however, about the factors that determine soil microbial community composition, and whether microbial community composition influences process rates. Here, we investigated whether aboveground plant diversity affects soil microbial community composition, and whether differences in microbial communities in turn affect ecosystem process rates. Using an experimental system at La Selva Biological Station, Costa Rica, we found that plant diversity (plots contained 1, 3, 5, or > 25 plant species) had a significant effect on microbial community composition (as determined by phospholipid fatty acid analysis). The different microbial communities had significantly different respiration responses to 24 labile carbon compounds. We then tested whether these differences in microbial composition and catabolic capabilities were indicative of the ability of distinct microbial communities to decompose different types of litter in a fully factorial laboratory litter transplant experiment. Both microbial biomass and microbial community composition appeared to play a role in litter decomposition rates. Our work suggests, however, that the more important mechanism through which changes in plant diversity affect soil microbial communities and their carbon cycling activities may be through alterations in their abundance rather than their community composition.  相似文献   

15.
Leaf litter decomposition is a major carbon input to soil, making it a target for increasing soil carbon storage through microbiome engineering. We expand upon previous findings to show with multiple leaf litter types that microbial composition can drive variation in carbon flow from litter decomposition and specific microbial community features are associated with synonymous patterns of carbon flow among litter types. Although plant litter type selects for different decomposer communities, within a litter type, microbial composition drives variation in the quantity of dissolved organic carbon (DOC) measured at the end of the decomposition period. Bacterial richness was negatively correlated with DOC quantity, supporting our hypothesis that across multiple litter types there are common microbial traits linked to carbon flow patterns. Variation in DOC abundance (i.e. high versus low DOC) driven by microbial composition is tentatively due to differences in bacterial metabolism of labile compounds, rather than catabolism of non-labile substrates such as lignin. The temporal asynchrony of metabolic processes across litter types may be a substantial impediment to discovering more microbial features common to synonymous patterns of carbon flow among litters. Overall, our findings support the concept that carbon flow may be programmed by manipulating microbial community composition.  相似文献   

16.
When glaciers retreat they expose barren substrates that become colonized by organisms, beginning the process of primary succession. Recent studies reveal that heterotrophic microbial communities occur in newly exposed glacial substrates before autotrophic succession begins. This raises questions about how heterotrophic microbial communities function in the absence of carbon inputs from autotrophs. We measured patterns of soil organic matter development and changes in microbial community composition and carbon use along a 150-year chronosequence of a retreating glacier in the Austrian Alps. We found that soil microbial communities of recently deglaciated terrain differed markedly from those of later successional stages, being of lower biomass and higher abundance of bacteria relative to fungi. Moreover, we found that these initial microbial communities used ancient and recalcitrant carbon as an energy source, along with modern carbon. Only after more than 50 years of organic matter accumulation did the soil microbial community change to one supported primarily by modern carbon, most likely from recent plant production. Our findings suggest the existence of an initial stage of heterotrophic microbial community development that precedes autotrophic community assembly and is sustained, in part, by ancient carbon.  相似文献   

17.
Cyanobacterial biomass was added to anaerobic sediment to simulate the natural input of complex organic substrate that occurs in nature after algae blooms. Sediments were incubated at 0 degree C, 8 degrees C and 24 degrees C for 13 days. Community dynamics were measured by fluorescence in situ hybridisation (FISH), denaturing gradient gel electrophoresis (DGGE), and sequencing of 16S rDNA PCR products. Metabolic changes were followed by the analysis of total carbon mineralisation, sulfate reduction, and ammonium production rates. The addition of organic material resulted in significant changes in the composition of the microbial community at all temperatures tested. Sulfate reduction was the main mineralisation process detected. However, not sulfate-reducers but rather members of the Cytophaga-Flavobacterium phylogenetic cluster showed the highest increase in the bacterial cells as detected by FISH. We conclude that these organisms play an important role in the anaerobic decomposition of complex organic material perhaps because they are the main catalysts of macromolecule hydrolysis and fermentation. The molecular methods also indicated a stimulation of ribosome synthesis. The detection of a large number of rRNA-rich cells belonging to the Cytophaga-Flavobacterium phylogenetic cluster further supports the importance of their role in the degradation of complex organic material in anaerobic marine sediments. Their detection in high numbers in the field may indicate recent deposition events.  相似文献   

18.
Jacob A. Cram 《Molecular ecology》2015,24(23):5767-5769
Marine microbes make up a key part of ocean food webs and drive ocean chemistry through a range of metabolic processes. A fundamental question in ecology is whether the diversity of organisms in a community shapes the ecological functions of that community. While there is substantial evidence to support a positive link between diversity and ecological productivity for macro‐organisms in terrestrial environments, this relationship has not previously been verified for marine microbial communities. One factor complicating the understanding of this relationship is that many marine microbes are dormant and are easily dispersed by ocean currents, making it difficult to ensure that the organisms found in a given environmental sample accurately reflect processes occurring in that environment. Another complication is that, due to microbes great range of genotypic and phenotypic variability, communities with distantly related species may have greater range of metabolic functions than communities have the same richness and evenness, but in which the species present are more closely related to each other. In this issue of Molecular Ecology, Galand et al. (2015) provide compelling evidence that the most metabolically active communities are those in which the nondormant portion of the microbial community has the highest phylogenetic diversity. They also illustrate that focusing on the active portion of the community allows for detection of temporal patterns in community structure that would not be otherwise evident. The authors’ point out that the presence of many dormant organisms that do not contribute to ecosystem functioning is a feature that makes microbial ecosystems fundamentally different from macro‐ecosystems and that this difference needs to be accounted for in microbial ecology theory.  相似文献   

19.
The Antarctic soil microbial community has a crucial role in the growth and stabilization of higher organisms, such as vascular plants. Analysis of the soil microbiota composition in that extreme environmental condition is crucial to understand the ecological importance and biotechnological potential. We evaluated the efficiency of isolation and abundance of strict anaerobes in the vascular plant Deschampsia antarctica rhizosphere collected in the Antarctic’s Admiralty Bay and associated biodiversity to metabolic perspective and enzymatic activity. Using anaerobic cultivation methods, we identified and isolated a range of microbial taxa whose abundance was associated with Plant Growth-Promoting Bacteria (PGPB) and presences were exclusively endemic to the Antarctic continent. Firmicutes was the most abundant phylum (73 %), with the genus Clostridium found as the most isolated taxa. Here, we describe two soil treatments (oxygen gradient and heat shock) and 27 physicochemical culture conditions were able to increase the diversity of anaerobic bacteria isolates. Heat shock treatment allowed to isolate a high percentage of new species (63.63 %), as well as isolation of species with high enzymatic activity (80.77 %), which would have potential industry application. Our findings contribute to the understanding of the role of anaerobic microbes regarding ecology, evolutionary, and biotechnological features essential to the Antarctic ecosystem.  相似文献   

20.
Sponges harbour complex communities of diverse microorganisms, which have been postulated to form intimate symbiotic relationships with their host. Here we unravel some of these interactions by characterising the functional features of the microbial community of the sponge Cymbastela concentrica through a combined metagenomic and metaproteomic approach. We discover the expression of specific transport functions for typical sponge metabolites (for example, halogenated aromatics, dipeptides), which indicates metabolic interactions between the community and the host. We also uncover the simultaneous performance of aerobic nitrification and anaerobic denitrification, which would aid to remove ammonium secreted by the sponge. Our analysis also highlights the requirement for the microbial community to respond to variable environmental conditions and hence express an array of stress protection proteins. Molecular interactions between symbionts and their host might also be mediated by a set of expressed eukaryotic-like proteins and cell–cell mediators. Finally, some sponge-associated bacteria (for example, a Phyllobacteriaceae phylotype) appear to undergo an evolutionary adaptation process to the sponge environment as evidenced by active mobile genetic elements. Our data clearly show that a combined metaproteogenomic approach can provide novel information on the activities, physiology and interactions of sponge-associated microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号