首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of tropical rain forest beta-diversity debate environmental determinism versus dispersal limitation as principal mechanisms underlying floristic variation. We examined the relationship between soil characteristics, terrain, climate variation, and rain forest composition across a 3000 km2 area in northeastern Costa Rica. Canopy tree and arboreal palm species abundance and soils were measured from 127 0.25-ha plots across Caribbean lowlands and foothills. Plot elevation, slope, temperature, and precipitation variation were taken from digital grids. Ordination of forest data yielded three floristic groups with strong affinities to foothills and differing lowland environments. Variation in floristics, soil texture, and climate conditions showed parallel patterns of significantly positive spatial autocorrelation up to 13 km and significantly negative correlation beyond 40 km. Partial Mantel tests resulted in a significant correlation between floristic distance and terrain, climate and soil textural variables controlling the effect of geographical distance. Separate comparisons for palm species showed significant correlation with Mg and Ca concentrations among other soil factors. Arboreal palm species demonstrated a stronger relationship with soil factors than did canopy trees. Correlation between floristic data and geographical distance, related to seed dispersal or unmeasured variables, was not significant after controlling for soil characteristics and elevation. Canopy trees and palms showed differing relationships to soil and other environmental factors, but lend greater support for a niche-assembly hypothesis than to a major role for dispersal limitation in determining species turnover for this landscape.  相似文献   

2.
Clidemia hirta is a highly invasive shrub in tropical forests throughout the world, but has had little success invading mainland sites and undisturbed forests. In the early 1990s, this plant was found to have invaded an unexpected site, an undisturbed continental tropical forest at Pasoh, Peninsular Malaysia. In 1997, a study was conducted of the C. hirta population at the Pasoh Forest Reserve. A demographic survey of the 50–ha long–term research plot at Pasoh located 1002 C. hirta individuals, 69 of which were reproductive at the time of the study. All but 8 individuals were located in high light gaps or gap edges. Relative growth rates were significantly higher in gaps and gap edges than in the understory, and no reproductive individuals were found in the understory. Mean plant size and dry biomass density increased steadily over the course of the study, while the observed mortality rate was 0 percent over two months. The biomass density of Clidemia at Pasoh was <500 g/ha at the conclusion of this study, but because the population is confined almost exclusively to high light environments, its density in these sites is much higher. The location of C. hirta plants in gaps was significantly correlated with past disturbance by wild pigs, suggesting that soil disturbance and light availability are essential for their establishment. The implication of this study is that by competing with native species in gaps, C. hirta invasion has the potential to alter forest regeneration at Pasoh. Changing land use practices near the reserve have increased the number of wild pigs, and thus the level of disturbance, which may explain the recent success of C. hirta at Pasoh.  相似文献   

3.
Logging can significantly change the structure of rainforest communities. To better understand how logging drives this change, butterflies and environmental variables were assessed within both unlogged and logged forest in Indonesian Borneo. In the whole dataset, we found local environmental variables and geographic distance combined captured 53.1% of the variation in butterfly community composition; 29.6% was associated with measured local environmental variables, 13.6% with geographic distance between sites, and 9.9% with covariation between geographic distance and environmental variables. The primary axis of variation in butterfly community composition represented a disturbance gradient from unlogged to logged forest. Subsequent axes represented gradients influenced by variables such as canopy cover and total tree density. There were significant associations between environmental variables and geographic range and larval host plant use of species. Specifically, butterflies using trees as larval host plants and those with distributions limited to Borneo were more likely to be present in unlogged forest. By contrast, species that tended to be more abundant in logged forest were those with widespread distributions and those using lianas and grasses as larval host plants. The results of this study highlight the importance of environmental variables and disturbance, e.g., selective logging, in structuring rainforest community diversity. Moreover, they confirm how species traits, such as larval food use and geographic distributions can determine patterns of species abundance following environmental change.  相似文献   

4.
One of the serious environmental problems since the 1980s has been the conflict between the high rate of deforestation and maintenance of healthy ecosystem services and biological values in tropical forests. There is an urgent demand for setting up an appropriate environmental assessment to keep healthy ecosystem functions and biodiversity along with sustainable forest use based on ecology. In this study, we tried to assess logging-disturbance effects on the abundances of several flying insect groups (higher-taxon approach) in lowland tropical rain forest (Deramakot Forest Reserve, Sabah, Malaysia), while considering seasonal changes and vertical forest stratification. The season was the most important factor affecting the abundances of all the insect groups. Effects of logging disturbance were prominent in the understorey but obscure in the canopy. Changes in physical conditions caused by logging—possibly an increased evaporation due to solar radiation—may have decreased the abundance of desiccation-sensitive insects, especially in the understorey. There are also two probable reasons for the difference between events in the understorey and those in the canopy: (1) noise effects of various physical, environmental factors may have obscured insect responses to logging disturbance in the canopy; (2) higher spatio-temporal variation in quality and quantity of living food resources—such as leaves, flowers and fruits—provided in the canopy may have affected the abundance of their consumer insects independently of logging disturbance. Thus, this study suggests that the abundance of some insect groups at higher-taxon level, especially in the understorey, can be used as bioindicators for assessing effects of logging disturbance on the forest ecosystem.  相似文献   

5.
Continental tropical forests are thought to be resistant to alien plant invasion due to a lack of disturbance, or low propagule pressure from introduced species. We assessed the importance of disturbance and edge effects by surveying areas of submontane and lowland forest of Amani Nature Reserve in the East Usambara mountains, Tanzania. These areas are in the vicinity of Amani Botanic Garden (ABG)—a propagule source for many alien plant species. We surveyed three edges in the vicinity of the ABG plantations, using plots interspersed along multiple 250 m transects. Survey plots were either in secondary or seminatural forest, representing a difference in past disturbance). Alien plant species richness and abundance declined with increasing distance from forest edges, indicating that edge effects were important. In addition, the effect of distance on richness and abundance of alien species as adults was much smaller in seminatural than secondary forest, emphasizing that invasion of seminatural forest is less likely to occur. Abundance and occurrence of individual species showed broadly similar declines with increasing distance from the forest edge, and lower abundance in seminatural compared to secondary forest. Alien species were dominant in 15 percent of plots surveyed. As 28 percent of the Amani nature reserve forest is within 250 m of an edge, the importance of disturbance and edges could make a potentially large proportion of the forest vulnerable to alien species invasion.  相似文献   

6.
We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI) and above ground herbaceous biomass (AGBH) along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m), stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps), soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand structure, environmental gradients and disturbance in African forests and woodlands.  相似文献   

7.
Arboreal fauna living in tropical ecosystems may be particularly affected by roads given their dependency on forest cover and the high vulnerability of such ecosystems to changes. Over a period of 4 yr, we followed subgroups of spider monkeys living in a regenerating dry tropical forest with 8.2 km of roads within their home range. We aimed to understand whether roads shaped the home range of spider monkeys and which road features affected their movement. Only 18 percent (3 km) of the spider monkeys’ home range perimeter bordered with roads; these roads had greater habitat disparity between road sides than roads inside the home range. Although monkeys were reluctant to be close to roads, and roadside habitat contained low proportions of mature forest, spider monkeys crossed roads at 69 locations (7.5 crossings per kilometer). The main road characteristic affecting crossings was canopy opening size, with greater probability of crossing where canopy openings were smaller. Our findings support the importance of canopy opening size for road crossing of arboreal taxa, but they also indicate the relevant role roadside forest structure may have. Minimizing canopy opening size and forest disturbance along roads can facilitate the movement of arboreal fauna and preserve the important role of spider monkeys and other arboreal taxa in seed dispersal and thus the maintenance and regeneration of forest diversity.  相似文献   

8.
The movement of frugivores between remnant forests and successional areas is vital for tropical forest tree species to colonize successional habitats. The response of these species to the spatial structure of pasture tree cover is largely unknown. We studied avian frugivores that were found in primary forest edges and large pastures in eastern Amazonia, Brazil. We determined how the small‐scale spatial structure of pasture trees at forest edges affects five response variables: bird presence, visitation rate, duration of visit, species richness, and an index accounting for species’ level of frugivory and abundance in forests. We used hierarchical linear models to estimate the effect of four predictor variables on response variables: (1) clustering of pasture trees; (2) percent canopy cover of pasture trees; (3) distance of pasture tree to forest edge; and (4) tree crown area. The study species, many of which are widely distributed in the Neotropics, were generally insensitive to percent cover and clustering of trees. Frugivore visitation to individual trees remained constant as cover increased. Visitation was positively correlated with focal tree distance to forest edge and crown area. The positive relationship between distance and visitation rates may be due to the increased abundance of some resource further from forests. If pastures were abandoned the distance from forest edges would not likely limit frugivore visitation and seed deposition under large pasture trees in our study (i.e., up to 200 m distant).  相似文献   

9.
Aim Dispersal assembly and niche assembly are two competing theories proposed to explain the maintenance of species diversity in tropical forests. Dispersal theory emphasizes the role of chance colonization events and distance‐limited seed dispersal in explaining species abundance and distribution, whereas niche theory emphasizes differences among species in requirements for potentially limiting resources. Species distribution patterns in tropical forests often correlate with geology and topography, but tests of the relative importance of dispersal and niche partitioning have been hampered by an inadequate characterization of resource availability. The aim of this study was to explore how soil chemical and physical properties, climate, and geographic distance affect understorey palm communities in lower montane forests. Location Fortuna Forest Reserve, Chiriqui Province, and Palo Seco Forest Reserve, Bocas del Toro Province, in western Panama. Methods Understorey palms and soil nutrient concentrations were surveyed within 10 sites on different soil types across a 13‐km transect. Variation in palm community composition was examined in relation to spatial and environmental variables. Results The 25 understorey palm species recorded in the study were non‐randomly distributed among forests differing in soil nutrient availability. In support of dispersal theory, floristic similarity decreased predictably with increasing geographic distance. However, environmental and soil variables were also correlated with geographic distance. Floristic similarity was also highly associated with a subset of environmental variables. Variation in palm community similarity was most strongly correlated with inorganic nitrogen availability and cation concentration. A subset of soil variables had a stronger relationship with floristic similarity when geographic distance was controlled for than did geographic distance when differences in soils were controlled for. Main conclusions Both dispersal and niche processes affect palm species distribution patterns. Although spatially limited dispersal may influence species distribution patterns, soil‐based habitat associations, particularly with respect to soil nitrogen, cation availability and aluminium concentrations, remain important factors influencing palm community composition at the mesoscale level in this tropical montane forest.  相似文献   

10.
If specialization influences species presence, then high tropical tree and shrub diversity should correspond with high environmental heterogeneity. Such heterogeneity may be found among different successional communities (i.e., canopy types). We explore species associations in three forest-dominated canopy types, forest, gap, and edge, in Kibale National Park, Uganda and determine environmental, soil and light, differences among canopy types. To determine the strength of differences among forested canopy types, they are also compared to grasslands. Tree and shrub density and species richness using rarefaction analysis were determined based on data from 24 small plots (5 × 5 m) in all four canopy types and 16 large plots (10 × 50 m) in forest and grassland canopy types. Environmental variables were determined along 10 (20 m) transects in the four canopy types. Using analysis of variance and principal components analysis, we demonstrate that forest and gap environments had similar soils, but forest had lower light levels than gap. We also found that grassland and edge were more similar to one another than to forest and gap, but differed in a number of important biotic and abiotic factors controlling soil water availability (e.g., edge had higher root length density of small roots < 2 mm diameter in the top 20 cm than grassland). Using principal components analysis to assess similarities in community composition, we demonstrate that gap and forest had indistinguishable communities and that edge was similar to but distinct from both communities. Complete species turnover only occurred between grassland and the three forested canopy types. Even though overall community composition was similar in the three forested canopy types, in analyses of individual species using randomization tests, many common species were most frequently found in only one canopy type; these patterns held across size classes. These results suggest that despite differences among environments, community composition was similar among forested canopy types, which are likely intergrading into one another. Interestingly, individual species are more frequently found in a single canopy type, indicating species specialization.  相似文献   

11.
Patch size of forest openings and arthropod populations   总被引:4,自引:0,他引:4  
Summary Five sizes of canopy openings (0.016 ha to 10 ha) were established in the Southern Appalachian Mountains in early 1982 to examine the initial patterns of plant and arthropod establishment across a size range of forest disturbances. Vegetation standing crop after the first growing season was considerably higher in large than small openings in apparent response to greater resource release (e.g., sunlight) in larger openings. Woody stump and root sprouts were the dominant mode of revegetation in each patch size. Forest dominants such as Quercus rubra, Q. prinus and Carya spp. were less important as sprouters in openings than several minor forest components (e.g., Robinia pseudo-acacia, Acer rubrum, Halesia carolina and Cornus florida). Arthropod abundance and community composition varied across the size range of forest openings. Arthropods from the surrounding forest readily utilized the smallest canopy openings (0.016 ha). All feeding guilds were well represented in these small openings and herbivore biomass and load (mg of herbivores/g of foliage) were much higher than in larger patches. In contrast, arthropod abundance and species richness were significantly lower in mid-size than smaller patches. The relatively sparse cover and high sunlight in mid-size openings may have promoted surface heat buildups or soil surface/litter moisture deficits which restricted arthropod entry from the surrounding forest. Arthropod abundance and species richness were higher in large than mid-size patches. The greater vegetation cover in larger openings may have minimized the deleterious effects on arthropod populations. However, the absence of population increases among these arthropod species maintained herbivore loads at very low levels in large patches. Our results suggest that arthropod abundance and diversity in sprout-dominated forest openings are highly dependent on the extent of environmental differences between patch and surrounding forest.  相似文献   

12.
Little is known about the importance of the forest overstorey relative to other factors in controlling the spatial variability in understorey species composition in near-natural temperate broadleaved forests. We addressed this question for the 19 ha ancient forest Suserup Skov (55°22′ N, 11°34′ E) in Denmark, one of the few old-growth temperate broadleaved forest remnants in north-western Europe, by inventorying understorey species composition and environmental conditions in 163 100 m2 plots. We use unconstrained and constrained ordinations, variation partitioning, and Indicator Species Analysis to provide a quantitative assessment of the importance of the forest overstorey in controlling understorey species composition. Comparison of the gradients extracted by unconstrained and constrained ordinations showed that the main gradients in understorey species composition in our old-growth temperate broadleaved forest remnant are not caused by variability in the forest overstorey, but are related to topography and soil, edge effects, and unknown broad-scale factors. Nevertheless, overstorey-related variables uniquely accounted for 15% of the total explained variation in understorey species composition, with the pure overstorey-related (Rpo), topography and soil (Rpt), edge and anthropogenic disturbance effects (Rpa), and spatial (Rps) variation fractions being of equal magnitude. The forward variable selection showed that among the overstorey-related variables understorey light availability and to a lesser extent vertical forest structure were most important for understorey species composition. No unique influence of overstorey tree species identity could be documented. There were many indicator species for high understorey light levels and canopy gap centres, but none for medium or low light or closed canopy. Hence, no understorey species behaved as obligate shade plants. Our study shows that, the forest overstorey has a weak control of understorey species composition in near-natural broadleaved forest, in contrast to results from natural and managed forests comprising both conifer and broadleaved species. Nevertheless, >20% of the understorey species found were indicators of high light conditions or canopy openings. Hence, variability in canopy structure and understorey light availability is important for maintaining understorey species diversity.  相似文献   

13.
Closed‐canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species‐conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree‐species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0–100‐m transect from edge to forest interior) on the liana community and liana–host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana‐infested trees, and determinants of the rates of tree infestation within five forest fragments (23–58 ha in area) and five nearby intact‐forest sites. Fragmented forests experienced considerable disturbance‐induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small‐sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low‐disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.  相似文献   

14.
Southeast Asia is rapidly losing native habitats and the consequences of this are poorly understood. Because habitat loss and disturbance can affect avian and seed survivorship, we conducted artificial nest and seed predation experiments on tropical southeast Asian islands. Data among islands and fragments or different forest types (e.g. primary versus exotic forest) within the islands are compared. On Singapore Island, predation among different forest types (primary, secondary and woodland) did not differ. Only at one of the sites, nest predation was higher at 75 m from the forest edge than at 25 m. In other sites, predation did not differ in relation to the distance from the forest edge. Predation among 10 small (0.8–1026 ha) Singaporean islands differed. However, none of the environmental variables (e.g. island area) could explain the predation differences. The lowest predation of both nests and seeds was recorded in the primary forest areas of a contiguous forest (25 500 ha) in central Java (Linggoasri). Small mammals were the main predators on Singapore and other surrounding islands. However, the index of potential predator abundance, overall, did not correlate with predation. While larger and more pristine forests may be better for avian and seed survivorship, pinpointing variables affecting both artificial nest and seed predation may be difficult.  相似文献   

15.
Large parts of the everwet tropics have been burned, leaving many unburned–burned forest edges. Here we studied a Bornean forest edge to determine: (1) how unburned and burned forest differ in vegetation structure, diversity, composition and plant functional traits 7 yr after fire, and (2) if these variables showed significant edge effects. Environmental and inventory data from 120 plots (0.01 ha each), covering both sides of a ~1.3 km forest boundary were sampled. Differences in vegetation structure, diversity, composition and plant functional traits were analyzed in relation to disturbance type (Mann–Whitney tests) and edge distance (partial correlation analysis that controlled for confounding effects of elevation, slope and fire intensity). Seven years after fire, burned forest differed significantly from unburned forest in most measured variables while few significant edge effects were detected, i.e., there existed a sharp delimitation between the two forest types. The regeneration of the burned forest depended almost entirely on in situ recruitment with little input of late successional species from the neighboring old growth forest. On the other hand, old growth forest showed few signs of edge degradation. A possible explanation for these results might be related to the absence of a mast fruiting event during these first 7 yr of forest recovery, resulting in low levels of late successional species seed input into the burned forest, combined with the quick development of a closed canopy in the burned forest by early successional species that shielded the unburned forest from adverse edge effects.  相似文献   

16.
We used logistic and Poisson regression models to determine factors of forest and landscape structure that influence the presence and abundance of rodent species in the rain forest of Ranomafana National Park in southeastern Madagascar. Rodents were collected using live-traps along a gradient of human disturbance. All five endemic rodent species (Nesomys rufus, N. audeberti, Eliurus tanala, E. minor and E. webbi) and the introduced rat Rattus rattus were captured in both secondary and primary forests, but the introduced Mus musculus was only trapped in secondary forest. The abundance of R. rattus increased with the level of habitat disturbance, and it was most common in the heavily logged secondary forest. Furthermore, the probability of the presence of R. rattus increased with decreasing distance from forest edge and decreasing canopy cover, while the probability of presence increased with increasing herbaceous cover, altitude and overstory tree height. The species was never observed farther than 500 m away from human habitation or camp-site. N. rufus prefered selectively-logged forest at altitudes above 900 m a.s.l. Its probability of presence increased with increasing canopy cover, herbaceous cover and distance from forest edge, and with decreasing density of fallen logs, overstory tree height and distance from human habitation. N. audeberti prefered heavily-logged areas, while E. tanala was the only species occurring along the entire range of forest disturbance. We suggest that in the Ranomafana National Park the spread of R. rattus is associated with deforestation.  相似文献   

17.
To investigate the influence of multiple canopy openings on the composition and diversity of recruited saplings in a forest frequently disturbed by typhoons. We conducted tree-by-tree censuses (diameter at breast height ≥ 1 cm) and mapped gaps (canopy height < 5 m) in 1993, 2000, 2008, and 2013 in a tropical mountain zonal foothill evergreen broad-leaved forest in Nanjenshan Nature Reserve, Taiwan. We analyzed the composition and diversity of recruited saplings within a 2.1 ha plot (840 sampling quadrats (5 m × 5 m)) with variable numbers of canopy openings recorded during the study period. Composition of recruited saplings was dissimilar between quadrats that stayed opened and those that stayed closed throughout the study period (pairwise similarity estimates C02 = 0.52, 95% CI = 0.38–0.66). The quadrats under closed canopy had high diversity when weighting rare species (species richness), whereas quadrats with one or two gap opening records during the past 20 years had high diversity when weighting the abundance of species. Although canopy openings provided establishment conditions for saplings of some shade-intolerant species, due to the nature of small gap size, such habitats do not favor the dominance of shade-intolerant species. Even in a frequently disturbed forest, species composition and richness of recruited saplings were mainly contributed by shade-tolerant species. Although multiple canopy openings facilitated the establishment of shade-intolerant species, species diversity in the study forests is possibly mainly mediated by coexistence mechanisms of those shade-tolerant species rather than light-gap-related species strategies.  相似文献   

18.
《PloS one》2015,10(12)
Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods.  相似文献   

19.
基于冗余分析的城市森林林下层植物多样性预测   总被引:13,自引:2,他引:11  
尹锴  崔胜辉  赵千钧  花利忠  石龙宇  吝涛 《生态学报》2009,29(11):6085-6094
以4类多样性指数作为衡量城市森林林下层植物多样性差异的定量指标,并同时记录对应样方尺度的环境变量特征.以期应用冗余分析(RDA)手段提取城市森林林下层植物多样性的干扰控制因子,从而进一步揭示主要环境变量对城市森林林下层植物多样性变异的贡献率.RDA分析结果表明枯落物盖度、距林缘距离、小路面积和垃圾数4变量为能够显著解释林下叶层植物多样性变化的最小变量组合,解释信息量百分比达61%,10变量共同解释的信息量为72.1%.在RDA分析的基础上,对10环境变量组合与植物多样性特征进行双重筛选逐步回归,发现草本密度与海拔、坡度、距林缘距离、枯落物盖度呈极显著相关;草本层Pielou均匀度指数与海拔、坡度、郁闭度、枯落物盖度、岩石盖度呈极显著相关;草本层Simpson多样性指数与坡度、枯落物盖度、距林缘距离、岩石盖度、伐桩数呈极显著相关;灌木层Pielou均匀度指数则与海拔、郁闭度、小路面积、岩石盖度呈极显著相关.  相似文献   

20.
Abstract. We characterized the abundance, size and spatial patterning of canopy gaps, as well as gap‐forming processes and light availability in boreal, sub‐boreal, northern temperate and subalpine old‐growth forests of northwestern British Columbia. The proportion of area in canopy gaps ranged from 32% in northern temperate forests to 73% in subalpine forests. Evenly distributed developmental gaps were dominant but permanent openings created by edaphic components and by shrub communities were also common, particularly in subboreal forests. Abundant gaps, large gap sizes, high numbers of gap makers per gap and frequent gap expansion events suggest that gaps have long tenure in these forests. Snapped stems and standing dead mortality were the most common modes of mortality in all forest types resulting in little forest floor disturbance, creating few germination sites for seedling establishment. We found high mean light levels (16–27% full sun) and little difference between non‐gap and gap light environments. Our results suggest that gap dynamics in these forests differ fundamentally from those in temperate and tropical forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号