首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Gene amplification refers to a genomic change that results in an increased dosage of the gene(s) affected. Amplification represents one of the major molecular pathways through which the oncogenic potential of proto-oncogenes is activated during tumorigenesis. The architecture of amplified genomic structures is simple in some tumor types, involving in the vast majority of cases only one gene, such as MYCN in neuroblastomas. On the other hand, it can be complex and discontinuous, involving several syntenic co-amplified genes, such as in the 11q13 amplification in breast cancer, although in many of these cases there may be a single target gene. The presence of different nonsyntenic amplified genes raises the possibility that cells of certain tumors are susceptible to independent amplification events. In general, the amplified genes do not undergo additional damage by mutations. The data indicate that it is the enhanced level of a wild-type protein that contributes to tumorigenesis. BioEssays 20 :473–479, 1998.© 1998 John Wiley & Sons, Inc.  相似文献   

3.
4.
The serine protease prostasin is a negative regulator of lipopolysaccharide-induced inflammation and has a role in the regulation of cellular immunity. Prostasin expression in cancer cells inhibits migration and metastasis, and reduces epithelial–mesenchymal transition. Programmed death-ligand 1 (PD-L1) is a negative regulator of the immune response and its expression in cancer cells interferes with immune surveillance. The aim of the present study was to investigate if prostasin regulates PD-L1 expression. We established sublines overexpressing various forms of prostasin as well as a subline deficient for the prostasin gene from the Calu-3 human lung cancer cells. We report here that PD-L1 expression induced by interferon-γ (IFNγ) is further enhanced in cells overexpressing the wildtype membrane-anchored prostasin. The PD-L1 protein was localized on the cell surface and released into the culture medium in extracellular vesicles (EVs) with the protease-active prostasin. The epidermal growth factor-epidermal growth factor receptor (EGF-EGFR), protein kinase C (PKC), and mitogen-activated protein kinase (MAPK) participated in the prostasin-mediated up-regulation of PD-L1 expression. A Gene Set Enrichment Analysis (GSEA) of patient lung tumors in The Cancer Genome Atlas (TCGA) database revealed that prostasin and PD-L1 regulate common signaling pathways during tumorigenesis and tumor progression.  相似文献   

5.
6.
Sphingosylphosphorylcholine (SPC) is a naturally occurring bioactive lipid that is present in high density lipoproteins (HDL) particles and found at increased levels in blood and malignant ascites of patients with ovarian cancer. Here, we show that incubation of human epithelial tumour cells with SPC induces a perinuclear reorganization of intact keratin 8-18 filaments. This effect is specific for SPC, largely independent of F-actin and microtubules, and is accompanied by keratin phosphorylation. In vivo visco-elastic probing of single cancer cells demonstrates that SPC increases cellular elasticity. Accordingly, SPC stimulates migration of cells through size-limited pores in a more potent manner than lysophosphatidic acid (LPA). LPA induces actin stress fibre formation, but does not reorganize keratins in cancer cells and hence increases cellular stiffness. We propose that reorganization of keratin by SPC may facilitate biological phenomena that require a high degree of elasticity, such as squeezing of cells through membranous pores during metastasis.  相似文献   

7.
8.
Identification of target cells in lung tumorigenesis and characterization of the signals that control their behavior is an important step toward improving early cancer diagnosis and predicting tumor behavior. We identified a population of cells in the adult lung that bear the EpCAM+CD104+CD49f+CD44+CD24loSCA1+ phenotype and can be clonally expanded in culture, consistent with the properties of early progenitor cells. We show that these cells, rather than being restricted to one tumor type, can give rise to several different types of cancer, including adenocarcinoma and squamous cell carcinoma. We further demonstrate that these cells can be converted from one cancer type to the other, and this plasticity is determined by their responsiveness to transforming growth factor (TGF)-beta signaling. Our data establish a mechanistic link between TGF-beta signaling and SOX2 expression, and identify the TGF-beta/SMAD/SOX2 signaling network as a key regulator of lineage commitment and differentiation of lung cancer cells.Lung cancer is the leading cause of cancer-related mortality in both men and women worldwide. Lung cancers are divided into two major categories: non-small-cell lung cancer (NSCLC) and small-cell lung cancer. NSCLC accounts for ∼80% of all lung cancers and is divided further into adenocarcinoma (ADC), squamous cell carcinoma (SCC) and large-cell lung carcinoma. Of the four major types of lung cancer, Kras mutations are present in about 30–50% of ADC, a smaller percentage of SCC (5–7%) and <1% of SCLC.1, 2 Mutations of the p53 gene are common in all types of lung cancer and range from ∼30% in ADC to more than 70% in SCC and SCLC.3 Other alterations occur at lower frequencies in NSCLC, including mutations in EGFR (15%), EML4-ALK (4%), ERBB2 (2%), AKT1, BRAF, MAP2K1 and MET.2, 4 Previous efforts in comprehensive characterization of lung cancer include copy number and gene expression profiling, targeted sequencing of candidate genes and large-scale genome sequencing of tumor samples.5, 6, 7, 8, 9 Significant progress has also been made in developing mouse models of lung carcinogenesis.10, 11 The unifying theme underlying these studies is that there exists a permissive cellular context for each specific oncogenic lesion, and that only certain types of cells are capable of cancer initiation.12, 13, 14The lung consists of three anatomically distinct regions such as trachea, bronchioles and alveoli, each maintained by a distinct population of progenitor cells, that is, basal, Clara and alveolar type 2 (AT2) cells, respectively.15, 16 Previous work has focused upon AT2 cells, Clara cells (or variant Clara cells with low CC10 expression) and the putative bronchioalveolar stem cells (BASCs) as potential cells of origin for lung ADC.12, 14, 17 However, to date, only AT2 cells have been conclusively identified as having the potential to be the cells of origin for lung ADC.14, 17 This raises the question of whether Clara cells, their restricted subpopulations or the newly identified candidate stem cells, termed distal airway stem cells,18 alveolar epithelial progenitor cells (AECs)19, 20 and BASCs,12 also have the capacity to give rise to ADC. Current knowledge on the cellular origins of SCC, the second most common type of lung cancer, lags behind that of ADC, partly owing to the fact that squamous cells are not normally present in the respiratory epithelium, and therefore arise through either metaplasia (conversions between stem cell states) or trans-differentiation (conversions between differentiated cells).21, 22 Whether the mechanisms of SCC causation vary by cell type, their responses to various cells signaling cascades (e.g., transforming growth factor (TGF)-beta, WNT, etc.), or other tumor characteristics is unknown at present.To address the questions of cell type of origin and signal cascades that control their behavior, we developed in vitro culture conditions that favor the growth of lung epithelial cells with stem cell-like properties. We describe a population of cells isolated from the adult lung that, rather than being restricted to one tumor type, can give rise to several different types of cancer, including ADC and SCC. We also show that these cells can be converted from one cancer type to the other, and this plasticity is largely, if not solely, determined by TGF-beta signaling.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.

Background

Conditional transgenic models have established that tumors require sustained oncogene activation for tumor maintenance, exhibiting the phenomenon known as “oncogene-addiction.” However, most cancers are caused by multiple genetic events making it difficult to determine which oncogenes or combination of oncogenes will be the most effective targets for their treatment.

Methodology/Principal Findings

To examine how the MYC and K-rasG12D oncogenes cooperate for the initiation and maintenance of tumorigenesis, we generated double conditional transgenic tumor models of lung adenocarcinoma and lymphoma. The ability of MYC and K-rasG12D to cooperate for tumorigenesis and the ability of the inactivation of these oncogenes to result in tumor regression depended upon the specific tissue context. MYC-, K-rasG12D- or MYC/K-rasG12D-induced lymphomas exhibited sustained regression upon the inactivation of either or both oncogenes. However, in marked contrast, MYC-induced lung tumors failed to regress completely upon oncogene inactivation; whereas K-rasG12D-induced lung tumors regressed completely. Importantly, the combined inactivation of both MYC and K-rasG12D resulted more frequently in complete lung tumor regression. To account for the different roles of MYC and K-rasG12D in maintenance of lung tumors, we found that the down-stream mediators of K-rasG12D signaling, Stat3 and Stat5, are dephosphorylated following conditional K-rasG12D but not MYC inactivation. In contrast, Stat3 becomes dephosphorylated in lymphoma cells upon inactivation of MYC and/or K-rasG12D. Interestingly, MYC-induced lung tumors that failed to regress upon MYC inactivation were found to have persistent Stat3 and Stat5 phosphorylation.

Conclusions/Significance

Taken together, our findings point to the importance of the K-Ras and associated down-stream Stat effector pathways in the initiation and maintenance of lymphomas and lung tumors. We suggest that combined targeting of oncogenic pathways is more likely to be effective in the treatment of lung cancers and lymphomas.  相似文献   

17.
18.
19.
Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulated in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号