首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Targeted maximum likelihood estimation of a parameter of a data generating distribution, known to be an element of a semi-parametric model, involves constructing a parametric model through an initial density estimator with parameter ? representing an amount of fluctuation of the initial density estimator, where the score of this fluctuation model at ? = 0 equals the efficient influence curve/canonical gradient. The latter constraint can be satisfied by many parametric fluctuation models since it represents only a local constraint of its behavior at zero fluctuation. However, it is very important that the fluctuations stay within the semi-parametric model for the observed data distribution, even if the parameter can be defined on fluctuations that fall outside the assumed observed data model. In particular, in the context of sparse data, by which we mean situations where the Fisher information is low, a violation of this property can heavily affect the performance of the estimator. This paper presents a fluctuation approach that guarantees the fluctuated density estimator remains inside the bounds of the data model. We demonstrate this in the context of estimation of a causal effect of a binary treatment on a continuous outcome that is bounded. It results in a targeted maximum likelihood estimator that inherently respects known bounds, and consequently is more robust in sparse data situations than the targeted MLE using a naive fluctuation model. When an estimation procedure incorporates weights, observations having large weights relative to the rest heavily influence the point estimate and inflate the variance. Truncating these weights is a common approach to reducing the variance, but it can also introduce bias into the estimate. We present an alternative targeted maximum likelihood estimation (TMLE) approach that dampens the effect of these heavily weighted observations. As a substitution estimator, TMLE respects the global constraints of the observed data model. For example, when outcomes are binary, a fluctuation of an initial density estimate on the logit scale constrains predicted probabilities to be between 0 and 1. This inherent enforcement of bounds has been extended to continuous outcomes. Simulation study results indicate that this approach is on a par with, and many times superior to, fluctuating on the linear scale, and in particular is more robust when there is sparsity in the data.  相似文献   

2.
Sequential Randomized Controlled Trials (SRCTs) are rapidly becoming essential tools in the search for optimized treatment regimes in ongoing treatment settings. Analyzing data for multiple time-point treatments with a view toward optimal treatment regimes is of interest in many types of afflictions: HIV infection, Attention Deficit Hyperactivity Disorder in children, leukemia, prostate cancer, renal failure, and many others. Methods for analyzing data from SRCTs exist but they are either inefficient or suffer from the drawbacks of estimating equation methodology. We describe an estimation procedure, targeted maximum likelihood estimation (TMLE), which has been fully developed and implemented in point treatment settings, including time to event outcomes, binary outcomes and continuous outcomes. Here we develop and implement TMLE in the SRCT setting. As in the former settings, the TMLE procedure is targeted toward a pre-specified parameter of the distribution of the observed data, and thereby achieves important bias reduction in estimation of that parameter. As with the so-called Augmented Inverse Probability of Censoring Weight (A-IPCW) estimator, TMLE is double-robust and locally efficient. We report simulation results corresponding to two data-generating distributions from a longitudinal data structure.  相似文献   

3.
Estimating the causal effect of an intervention on a population typically involves defining parameters in a nonparametric structural equation model (Pearl, 2000, Causality: Models, Reasoning, and Inference) in which the treatment or exposure is deterministically assigned in a static or dynamic way. We define a new causal parameter that takes into account the fact that intervention policies can result in stochastically assigned exposures. The statistical parameter that identifies the causal parameter of interest is established. Inverse probability of treatment weighting (IPTW), augmented IPTW (A-IPTW), and targeted maximum likelihood estimators (TMLE) are developed. A simulation study is performed to demonstrate the properties of these estimators, which include the double robustness of the A-IPTW and the TMLE. An application example using physical activity data is presented.  相似文献   

4.
In biomedical science, analyzing treatment effect heterogeneity plays an essential role in assisting personalized medicine. The main goals of analyzing treatment effect heterogeneity include estimating treatment effects in clinically relevant subgroups and predicting whether a patient subpopulation might benefit from a particular treatment. Conventional approaches often evaluate the subgroup treatment effects via parametric modeling and can thus be susceptible to model mis-specifications. In this paper, we take a model-free semiparametric perspective and aim to efficiently evaluate the heterogeneous treatment effects of multiple subgroups simultaneously under the one-step targeted maximum-likelihood estimation (TMLE) framework. When the number of subgroups is large, we further expand this path of research by looking at a variation of the one-step TMLE that is robust to the presence of small estimated propensity scores in finite samples. From our simulations, our method demonstrates substantial finite sample improvements compared to conventional methods. In a case study, our method unveils the potential treatment effect heterogeneity of rs12916-T allele (a proxy for statin usage) in decreasing Alzheimer's disease risk.  相似文献   

5.
Previously, it was shown that the tetrameric potassium channel KcsA when present in a lipid bilayer can be dissociated by trifluoroethanol [van den Brink-van der Laan, E., et al. (2004) Biochemistry 43, 4240-4250]. Here, we demonstrate that this is a general property of small alcohols. We found that small alcohols dissociate the KcsA tetramer, at a concentration that depends on their membrane affinity. Importantly, the efficiency of the alcohol-induced tetramer dissociation was found to correlate with the efficiency of both alcohol-induced bilayer leakage and acyl chain disordering. Our data suggest that the ability of small alcohols to induce KcsA tetramer dissociation and to function as anesthetics depends on their effect on the membrane lateral pressure.  相似文献   

6.
Imputation, weighting, direct likelihood, and direct Bayesian inference (Rubin, 1976) are important approaches for missing data regression. Many useful semiparametric estimators have been developed for regression analysis of data with missing covariates or outcomes. It has been established that some semiparametric estimators are asymptotically equivalent, but it has not been shown that many are numerically the same. We applied some existing methods to a bladder cancer case-control study and noted that they were the same numerically when the observed covariates and outcomes are categorical. To understand the analytical background of this finding, we further show that when observed covariates and outcomes are categorical, some estimators are not only asymptotically equivalent but also actually numerically identical. That is, although their estimating equations are different, they lead numerically to exactly the same root. This includes a simple weighted estimator, an augmented weighted estimator, and a mean-score estimator. The numerical equivalence may elucidate the relationship between imputing scores and weighted estimation procedures.  相似文献   

7.
Personalized intervention strategies, in particular those that modify treatment based on a participant's own response, are a core component of precision medicine approaches. Sequential multiple assignment randomized trials (SMARTs) are growing in popularity and are specifically designed to facilitate the evaluation of sequential adaptive strategies, in particular those embedded within the SMART. Advances in efficient estimation approaches that are able to incorporate machine learning while retaining valid inference can allow for more precise estimates of the effectiveness of these embedded regimes. However, to the best of our knowledge, such approaches have not yet been applied as the primary analysis in SMART trials. In this paper, we present a robust and efficient approach using targeted maximum likelihood estimation (TMLE) for estimating and contrasting expected outcomes under the dynamic regimes embedded in a SMART, together with generating simultaneous confidence intervals for the resulting estimates. We contrast this method with two alternatives (G-computation and inverse probability weighting estimators). The precision gains and robust inference achievable through the use of TMLE to evaluate the effects of embedded regimes are illustrated using both outcome-blind simulations and a real-data analysis from the Adaptive Strategies for Preventing and Treating Lapses of Retention in Human Immunodeficiency Virus (HIV) Care (ADAPT-R) trial (NCT02338739), a SMART with a primary aim of identifying strategies to improve retention in HIV care among people living with HIV in sub-Saharan Africa.  相似文献   

8.
Let (T(1), T(2)) be gap times corresponding to two consecutive events, which are observed subject to random right-censoring. In this paper, a semiparametric estimator of the bivariate distribution function of (T(1), T(2)) and, more generally, of a functional E [φ(T(1),T(2))] is proposed. We assume that the probability of censoring for T(2) given the (possibly censored) gap times belongs to a parametric family of binary regression curves. We investigate the conditions under which the introduced estimator is consistent. We explore the finite sample behavior of the estimator and of its bootstrap standard error through simulations. The main conclusion of this paper is that the semiparametric estimator may be much more efficient than purely nonparametric methods. Real data illustration is included.  相似文献   

9.
Shuwei Li  Limin Peng 《Biometrics》2023,79(1):253-263
Assessing causal treatment effect on a time-to-event outcome is of key interest in many scientific investigations. Instrumental variable (IV) is a useful tool to mitigate the impact of endogenous treatment selection to attain unbiased estimation of causal treatment effect. Existing development of IV methodology, however, has not attended to outcomes subject to interval censoring, which are ubiquitously present in studies with intermittent follow-up but are challenging to handle in terms of both theory and computation. In this work, we fill in this important gap by studying a general class of causal semiparametric transformation models with interval-censored data. We propose a nonparametric maximum likelihood estimator of the complier causal treatment effect. Moreover, we design a reliable and computationally stable expectation–maximization (EM) algorithm, which has a tractable objective function in the maximization step via the use of Poisson latent variables. The asymptotic properties of the proposed estimators, including the consistency, asymptotic normality, and semiparametric efficiency, are established with empirical process techniques. We conduct extensive simulation studies and an application to a colorectal cancer screening data set, showing satisfactory finite-sample performance of the proposed method as well as its prominent advantages over naive methods.  相似文献   

10.
In this issue, the groups of Peter Rehling and Martin van der Laan report the identification of a new protein complex that is involved in the assembly of the peripheral stalk of the yeast mitochondrial F1Fo‐ATPase (Lytovchenko et al, 2014). Their work sheds new light onto the biogenesis of this fascinating and important machine.  相似文献   

11.
Shanshan Luo  Wei Li  Yangbo He 《Biometrics》2023,79(1):502-513
It is challenging to evaluate causal effects when the outcomes of interest suffer from truncation-by-death in many clinical studies; that is, outcomes cannot be observed if patients die before the time of measurement. To address this problem, it is common to consider average treatment effects by principal stratification, for which, the identifiability results and estimation methods with a binary treatment have been established in previous literature. However, in multiarm studies with more than two treatment options, estimation of causal effects becomes more complicated and requires additional techniques. In this article, we consider identification, estimation, and bounds of causal effects with multivalued ordinal treatments and the outcomes subject to truncation-by-death. We define causal parameters of interest in this setting and show that they are identifiable either using some auxiliary variable or based on linear model assumption. We then propose a semiparametric method for estimating the causal parameters and derive their asymptotic results. When the identification conditions are invalid, we derive sharp bounds of the causal effects by use of covariates adjustment. Simulation studies show good performance of the proposed estimator. We use the estimator to analyze the effects of a four-level chronic toxin on fetal developmental outcomes such as birth weight in rats and mice, with data from a developmental toxicity trial conducted by the National Toxicology Program. Data analyses demonstrate that a high dose of the toxin significantly reduces the weights of pups.  相似文献   

12.
BOOK REVIEW     
Catalogue of the Cicadoidea (Homoptera, Auchenorhyncha) 1956-1980: J. P. Duffels and P. A. van der Laan. Dr W. Junk Publishers, Dordrecht. 1985. Pp. xiv + 414.  相似文献   

13.
J M Robins  S D Mark  W K Newey 《Biometrics》1992,48(2):479-495
In order to estimate the causal effects of one or more exposures or treatments on an outcome of interest, one has to account for the effect of "confounding factors" which both covary with the exposures or treatments and are independent predictors of the outcome. In this paper we present regression methods which, in contrast to standard methods, adjust for the confounding effect of multiple continuous or discrete covariates by modelling the conditional expectation of the exposures or treatments given the confounders. In the special case of a univariate dichotomous exposure or treatment, this conditional expectation is identical to what Rosenbaum and Rubin have called the propensity score. They have also proposed methods to estimate causal effects by modelling the propensity score. Our methods generalize those of Rosenbaum and Rubin in several ways. First, our approach straightforwardly allows for multivariate exposures or treatments, each of which may be continuous, ordinal, or discrete. Second, even in the case of a single dichotomous exposure, our approach does not require subclassification or matching on the propensity score so that the potential for "residual confounding," i.e., bias, due to incomplete matching is avoided. Third, our approach allows a rather general formalization of the idea that it is better to use the "estimated propensity score" than the true propensity score even when the true score is known. The additional power of our approach derives from the fact that we assume the causal effects of the exposures or treatments can be described by the parametric component of a semiparametric regression model. To illustrate our methods, we reanalyze the effect of current cigarette smoking on the level of forced expiratory volume in one second in a cohort of 2,713 adult white males. We compare the results with those obtained using standard methods.  相似文献   

14.
Identifying a biomarker or treatment-dose threshold that marks a specified level of risk is an important problem, especially in clinical trials. In view of this goal, we consider a covariate-adjusted threshold-based interventional estimand, which happens to equal the binary treatment–specific mean estimand from the causal inference literature obtained by dichotomizing the continuous biomarker or treatment as above or below a threshold. The unadjusted version of this estimand was considered in Donovan et al.. Expanding upon Stitelman et al., we show that this estimand, under conditions, identifies the expected outcome of a stochastic intervention that sets the treatment dose of all participants above the threshold. We propose a novel nonparametric efficient estimator for the covariate-adjusted threshold-response function for the case of informative outcome missingness, which utilizes machine learning and targeted minimum-loss estimation (TMLE). We prove the estimator is efficient and characterize its asymptotic distribution and robustness properties. Construction of simultaneous 95% confidence bands for the threshold-specific estimand across a set of thresholds is discussed. In the Supporting Information, we discuss how to adjust our estimator when the biomarker is missing at random, as occurs in clinical trials with biased sampling designs, using inverse probability weighting. Efficiency and bias reduction of the proposed estimator are assessed in simulations. The methods are employed to estimate neutralizing antibody thresholds for virologically confirmed dengue risk in the CYD14 and CYD15 dengue vaccine trials.  相似文献   

15.
In large cohort studies, it is common that a subset of the regressors may be missing for some study subjects by design or happenstance. In this article, we apply the multiple data augmentation techniques to semiparametric models for epidemiologic data when a subset of the regressors are missing for some subjects, under the assumption that the data are missing at random in the sense of Rubin (2004) and that the missingness probabilities depend jointly on the observable subset of regressors, on a set of observable extraneous variables and on the outcome. Computational algorithms for the Poor Man's and the Asymptotic Normal data augmentations are investigated. Simulation studies show that the data augmentation approach generates satisfactory estimates and is computationally affordable. Under certain simulation scenarios, the proposed approach can achieve asymptotic efficiency similar to the maximum likelihood approach. We apply the proposed technique to the Multi-Ethic Study of Atherosclerosis (MESA) data and the South Wales Nickel Worker Study data.  相似文献   

16.
Wang X  Lim J  Stokes L 《Biometrics》2008,64(2):355-363
Summary .   MacEachern, Stasny, and Wolfe (2004, Biometrics 60 , 207–215) introduced a data collection method, called judgment poststratification (JPS), based on ideas similar to those in ranked set sampling, and proposed methods for mean estimation from JPS samples. In this article, we propose an improvement to their methods, which exploits the fact that the distributions of the judgment poststrata are often stochastically ordered, so as to form a mean estimator using isotonized sample means of the poststrata. This new estimator is strongly consistent with similar asymptotic properties to those in MacEachern et al. (2004) . It is shown to be more efficient for small sample sizes, which appears to be attractive in applications requiring cost efficiency. Further, we extend our method to JPS samples with imprecise ranking or multiple rankers. The performance of the proposed estimators is examined on three data examples through simulation.  相似文献   

17.
Summary This article develops semiparametric approaches for estimation of propensity scores and causal survival functions from prevalent survival data. The analytical problem arises when the prevalent sampling is adopted for collecting failure times and, as a result, the covariates are incompletely observed due to their association with failure time. The proposed procedure for estimating propensity scores shares interesting features similar to the likelihood formulation in case‐control study, but in our case it requires additional consideration in the intercept term. The result shows that the corrected propensity scores in logistic regression setting can be obtained through standard estimation procedure with specific adjustments on the intercept term. For causal estimation, two different types of missing sources are encountered in our model: one can be explained by potential outcome framework; the other is caused by the prevalent sampling scheme. Statistical analysis without adjusting bias from both sources of missingness will lead to biased results in causal inference. The proposed methods were partly motivated by and applied to the Surveillance, Epidemiology, and End Results (SEER)‐Medicare linked data for women diagnosed with breast cancer.  相似文献   

18.
Grigoletto M  Akritas MG 《Biometrics》1999,55(4):1177-1187
We propose a method for fitting semiparametric models such as the proportional hazards (PH), additive risks (AR), and proportional odds (PO) models. Each of these semiparametric models implies that some transformation of the conditional cumulative hazard function (at each t) depends linearly on the covariates. The proposed method is based on nonparametric estimation of the conditional cumulative hazard function, forming a weighted average over a range of t-values, and subsequent use of least squares to estimate the parameters suggested by each model. An approximation to the optimal weight function is given. This allows semiparametric models to be fitted even in incomplete data cases where the partial likelihood fails (e.g., left censoring, right truncation). However, the main advantage of this method rests in the fact that neither the interpretation of the parameters nor the validity of the analysis depend on the appropriateness of the PH or any of the other semiparametric models. In fact, we propose an integrated method for data analysis where the role of the various semiparametric models is to suggest the best fitting transformation. A single continuous covariate and several categorical covariates (factors) are allowed. Simulation studies indicate that the test statistics and confidence intervals have good small-sample performance. A real data set is analyzed.  相似文献   

19.
Researchers in observational survival analysis are interested in not only estimating survival curve nonparametrically but also having statistical inference for the parameter. We consider right-censored failure time data where we observe n independent and identically distributed observations of a vector random variable consisting of baseline covariates, a binary treatment at baseline, a survival time subject to right censoring, and the censoring indicator. We assume the baseline covariates are allowed to affect the treatment and censoring so that an estimator that ignores covariate information would be inconsistent. The goal is to use these data to estimate the counterfactual average survival curve of the population if all subjects are assigned the same treatment at baseline. Existing observational survival analysis methods do not result in monotone survival curve estimators, which is undesirable and may lose efficiency by not constraining the shape of the estimator using the prior knowledge of the estimand. In this paper, we present a one-step Targeted Maximum Likelihood Estimator (TMLE) for estimating the counterfactual average survival curve. We show that this new TMLE can be executed via recursion in small local updates. We demonstrate the finite sample performance of this one-step TMLE in simulations and an application to a monoclonal gammopathy data.  相似文献   

20.
Summary Ye, Lin, and Taylor (2008, Biometrics 64 , 1238–1246) proposed a joint model for longitudinal measurements and time‐to‐event data in which the longitudinal measurements are modeled with a semiparametric mixed model to allow for the complex patterns in longitudinal biomarker data. They proposed a two‐stage regression calibration approach that is simpler to implement than a joint modeling approach. In the first stage of their approach, the mixed model is fit without regard to the time‐to‐event data. In the second stage, the posterior expectation of an individual's random effects from the mixed‐model are included as covariates in a Cox model. Although Ye et al. (2008) acknowledged that their regression calibration approach may cause a bias due to the problem of informative dropout and measurement error, they argued that the bias is small relative to alternative methods. In this article, we show that this bias may be substantial. We show how to alleviate much of this bias with an alternative regression calibration approach that can be applied for both discrete and continuous time‐to‐event data. Through simulations, the proposed approach is shown to have substantially less bias than the regression calibration approach proposed by Ye et al. (2008) . In agreement with the methodology proposed by Ye et al. (2008) , an advantage of our proposed approach over joint modeling is that it can be implemented with standard statistical software and does not require complex estimation techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号