首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The curved-field reflectron (CFR), when used as the second mass analyzer in a tandem time-of-flight mass spectrometer, provides a design that enables the use of very high energy collision-induced dissociation (CID). Specifically, this is because the wide energy bandwidth of the CFR obviates the need for floating the collision region to decelerate the precursor ions and subsequently reaccelerating product ions to enable reflectron focusing. Here we describe the evolution of tandem instruments based on the CFR, from its introduction in 1993 to the current commercial TOF(2) mass spectrometer from Shimadzu Corporation, and briefly review the history of TOF/TOF instruments. A number of applications are also described. One is the characterization of a C-terminal cleavage of cystatin C that appears to be associated with patients with remitting relapse multiple sclerosis (RRMS). Both surface-enhanced laser desorption/ionization (SELDI) and MALDI were used on a high performance TOF instrument operating in the MS and MS/MS modes. Tandem TOF mass spectrometry has also been used to determine the acetylation sites on histones and on the enzyme, histone acetyl transferase (HAT), responsible for the modification. Acetylation has been determined quantitatively for multiple sites on histone H3 and H4 using a deuteroacetylation method. For a number of closely spaced sites on the histone tail regions, MS/MS enables us to then determine both the order and distribution of acetylation.  相似文献   

2.
Although peptide mass fingerprinting is currently the method of choice to identify proteins, the number of proteins available in databases is increasing constantly, and hence, the advantage of having sequence data on a selected peptide, in order to increase the effectiveness of database searching, is more crucial. Until recently, the ability to identify proteins based on the peptide sequence was essentially limited to the use of electrospray ionization tandem mass spectrometry (MS) methods. The recent development of new instruments with matrix-assisted laser desorption/ionization (MALDI) sources and true tandem mass spectrometry (MS/MS) capabilities creates the capacity to obtain high quality tandem mass spectra of peptides. In this work, using the new high resolution tandem time of flight MALDI-(TOF/TOF) mass spectrometer from Applied Biosystems, examples of successful identification and characterization of bovine heart proteins (SWISS-PROT entries: P02192, Q9XSC6, P13620) separated by two-dimensional electrophoresis and blotted onto polyvinylidene difluoride membrane are described. Tryptic protein digests were analyzed by MALDI-TOF to identify peptide masses afterward used for MS/MS. Subsequent high energy MALDI-TOF/TOF collision-induced dissociation spectra were recorded on selected ions. All data, both MS and MS/MS, were recorded on the same instrument. Tandem mass spectra were submitted to database searching using MS-Tag or were manually de novo sequenced. An interesting modification of a tryptophan residue, a "double oxidation", came to light during these analyses.  相似文献   

3.
A new method for on-plate protein digestion and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry analysis is proposed involving an automated one-step sample separation using nanoflow HPLC followed by nanoliter fraction collection and on-plate digestion with trypsin. This procedure uses a commercial automatic nanoliter fraction collection system for on-line spotting of the eluent onto a MALDI target. After protein digestion, the reaction is stopped by the addition of acidified matrix using the same automated system. Collected spots are subsequently analyzed using a MALDI tandem time-of-flight (TOF/TOF) mass spectrometer for protein sequencing and identification.  相似文献   

4.
A non-aqueous reverse-phase HPLC method, based on two columns in series, has been used to separate the major triacylglycerols (TAGs) from commercial castor oil and to perform either on-line negative ion atmospheric pressure chemical ionisation (APCI), or off-line positive ion matrix-assisted laser desorption ionisation (MALDI)/MS. The resulting Mass Spectra showed chloride-attached TAG molecules [M + CI]- in the case of negative-ion APCI, and sodium-attached TAG molecules [M + Na]+ in the case of positive-ion MALDI. For MALDI time-of-flight (TOF)/MS, a liquid binary matrix system consisting of sodium ferrocyanide and glycerol was applied, resulting in excellent TAG sensitivity, which was necessary for the determination of trace amounts of TAGs in castor oil. Both techniques allowed unambiguous molecular mass determination of the intact TAG molecules with no thermal degradation. Furthermore, seamless post source decay (PSD) fragment ion analysis by means of a curved field reflector TOF mass spectrometer allowed the determination of the fatty acid composition of each individual TAG. Castor oil contained eight different TAGs which were successfully determined by both APCI and MALDI techniques. In each TAG, at least two units of 12-hydroxy-9-octadecenoic acid (ricinoleic acid) were present. The following fatty acids were determined by seamless PSD fragment ion analysis and APCI/MALDI molecular mass determination as TAG substructures: ricinoleic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, dihydroxy stearic acid and eicosenoic acid. Triricinolein was the dominating TAG.  相似文献   

5.
Mass accuracy is a key parameter of mass spectrometric performance. TOF instruments can reach low parts per million, and FT-ICR instruments are capable of even greater accuracy provided ion numbers are well controlled. Here we demonstrate sub-ppm mass accuracy on a linear ion trap coupled via a radio frequency-only storage trap (C-trap) to the orbitrap mass spectrometer (LTQ Orbitrap). Prior to acquisition of a spectrum, a background ion originating from ambient air is first transferred to the C-trap. Ions forming the MS or MS(n) spectrum are then added to this species, and all ions are injected into the orbitrap for analysis. Real time recalibration on the "lock mass" by corrections of mass shift removes mass error associated with calibration of the mass scale. The remaining mass error is mainly due to imperfect peaks caused by weak signals and is addressed by averaging the mass measurement over the LC peak, weighted by signal intensity. For peptide database searches in proteomics, we introduce a variable mass tolerance and achieve average absolute mass deviations of 0.48 ppm (standard deviation 0.38 ppm) and maximal deviations of less than 2 ppm. For tandem mass spectra we demonstrate similarly high mass accuracy and discuss its impact on database searching. High and routine mass accuracy in a compact instrument will dramatically improve certainty of peptide and small molecule identification.  相似文献   

6.
In this work we present a hybrid linear trap/Fourier transform ion cyclotron resonance (ICR) mass spectrometer to perform protein sequencing using the bottom-up approach. We demonstrate that incorporation of the linear trap greatly enhances the overall performance of the hybrid system for the study of complex peptide mixtures separated by fast high-performance liquid chromatography gradients. The ability to detect in the linear trap enables employment of automatic gain control to greatly reduce space charging in the ICR cell irregardless of ion flux. Resulting accurate mass measurements of 2 ppm or better using external calibration are achieved for the base peak as well as ions at 2% relative abundance. The linear trap is used to perform ion accumulation and activation prior to detection in the ICR cell which increases the scan rate. The increased duty cycle allows for data-dependent mass analysis of coeluting peptides to be acquired increasing protein sequence coverage without increasing the gradient length. In addition, the linear trap could be used as an ion detection device to perform simultaneous detection of tandem mass spectra with full scan mass spectral detection in the ICR cell resulting in the fastest scan cycles for performing bottom-up sequencing of protein digests. Comparisons of protein sequence coverage are presented for product ion detection in the linear trap and ICR cell.  相似文献   

7.
Wax esters extracted from human hair have been examined by capillary GC-MS and by nano electrospray ionization (ESI) mass spectrometry using a tandem quadrupole mass spectrometer. Initially, the wax esters were examined by capillary GC-MS using conventional means, thus revealing an incomplete chromatographic resolution of the complex array of >200 wax esters ranging from 28 to 40 carbons in length, including saturated/straight-chained, unsaturated/straight-chained, saturated/branched, and unsaturated/branched molecular species. ESI of wax esters produced ammonium adduct ions [M+NH4]+, and collisional activation of these ions formed abundant [RCO2H2]+ product ions. Wax esters containing a double bond in the fatty acyl or fatty alcohol portion of the molecule revealed identical behavior, suggesting little influence of the double bond on the ionization process or subsequent decomposition. The wax ester mixture was analyzed by ESI and tandem mass spectrometry using multiple reaction monitoring and neutral loss scanning. The neutral loss experiment [loss of NH3 and CH2=CH-(CH2)nCH3] was particularly effective at rapidly surveying the complex biological mixture, identifying>160 different wax esters that range from 24 to 42 total carbons.  相似文献   

8.
Elucidating the fragmentation mechanisms in oligosaccharides using theoretical calculations is useful in analyzing the experimentally obtained mass spectra. Semi-empirical and ab initio quantum mechanics calculations were used to study the relationship between the structure and reactivity and the chemical properties of oligosaccharides. In these calculations, sodium-cationized oligosaccharides were investigated to determine Na+ ion affinity at several binding positions; in addition, the dependence of the glycosidic bond cleavage on the Na+ position was examined. The calculated structures reported in this study are directed at interpreting experimentally observed fragment ions, resulting from the cleavage of the glycosidic bonds. The calculated results for oligosaccharides containing between three and five monosaccharide units (27 oligosaccharides) were compared with experimental data generated by matrix-assisted laser-desorption/ionization (MALDI) using a quadrupole ion trap (QIT) with a time-of-flight (TOF) mass spectrometer (MS).  相似文献   

9.
A procedure based on gas chromatography–tandem mass spectrometry for identification and quantitation of lorazepam in plasma and urine is presented. The analyte was extracted from biological fluids under alkaline conditions using solid-phase extraction with an Extrelut-1 column in the presence of oxazepam-d5 as the internal standard. Both compounds were then converted to their trimethylsilyl derivatives and the reaction products were identified and quantitated by gas chromatography–tandem mass spectrometry using the product ions of the two compounds (m/z 341, 306 and 267 for lorazepam derivative and m/z 346, 309 and 271 for oxazepam-d5 derivative) formed from the parent ions by collision-induced dissociation in the ion trap spectrometer. Limit of quantitation was 0.1 ng/ml. This method was validated for urine and plasma samples of individuals in treatment with the drug.  相似文献   

10.
The increasing use of multistage tandem mass spectrometry (MS/MS and MS (3)) methods for comprehensive phosphoproteome analysis studies, as well as the emerging application of in silico spectral intensity prediction algorithms in enhanced database search analysis strategies, necessitate the development of an improved understanding of the mechanisms and other factors that affect the gas-phase fragmentation reactions of phosphorylated peptide ions. To address this need, we have examined the multistage collision-induced dissociation (CID) behavior of a set of singly and doubly charged phosphoserine- and phosphothreonine-containing peptide ions, as well as their regioselectively or uniformly deuterated derivatives, in a quadrupole ion trap mass spectrometer. Consistent with previous reports, the neutral loss of phosphoric acid (H 3PO 4) was observed as a dominant reaction pathway upon MS/MS. The magnitude of this loss was found to be highly dependent on the proton mobility of the precursor ion for both phosphoserine- and phosphothreonine-containing peptides. In contrast to that currently accepted in the literature, however, the results obtained in this study unequivocally demonstrate that the loss of H 3PO 4 does not predominantly occur via a "charge-remote" beta-elimination reaction. The observation of product ions corresponding to the loss of formaldehyde (CH 2O, 30 Da, or CD 2O, 32 Da) or acetaldehyde (CH 3CHO, 44 Da) upon MS (3) dissociation of the [M+ nH-H 3PO 4] ( n+ ) product ions from phosphoserine- and phosphothreonine-containing peptide ions, respectively, provide experimental evidence for a "charge-directed" mechanism involving an S N2 neighboring group participation reaction, resulting in the formation of a cyclic product ion. Potentially, these "diagnostic" MS (3) product ions may provide additional information to facilitate the characterization of phosphopeptides containing multiple potential phosphorylation sites.  相似文献   

11.
A novel linear ion trap (LIT) mass spectrometer with dual matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) ionization sources has been built in the MALDI-LIT-ESI configuration. The design features two independent ion source/ion optical channels connected to opposite ends of a single mass analyzer. The instrument consists of a commercial MALDI-LIT instrument modified by the addition of a home-built vacuum manifold, ion optical system, control electronics, and programming necessary to couple an atmospheric pressure interface to the commercial instrument. In addition to the added ESI functionality, the capabilities of the system also include simultaneous dual-channel ion introduction and analysis and high-duty cycle electronic switching (<1 s) between ion channels. Analytical and ion chemical applications of the dual-source system are explored. One analytical application is the enhanced protein sequence coverage achieved when using both ESI and MALDI to examine a tryptic digest of a six-protein mixture. The differences in the efficiency with which peptides in a mixture are ionized by the two methods give improved sequence coverage when both are applied. Other analytical applications include the use of the ions from one source as intensity or mass standards for the analyte ions from the other. An ion chemistry application involves the use of energy-resolved tandem mass spectrometry (MS/MS) to seek evidence for the generation of isomeric ions from a particular compound using the two ionization methods. A high level of agreement was achieved between the MS/MS spectra recorded under a variety of conditions after ESI and MALDI ionization; this provides evidence of the reproducibility and internal consistency of data from the dual source instrument. However, each of the peptides examined generated identical populations of structures in the two ionization methods under our conditions which are interpreted as involving slow cooling into the most stable minimum on the potential energy surface.  相似文献   

12.
A prototype linear octopole ion trap/ion mobility/tandem mass spectrometer has been coupled with a nanoflow liquid chromatography separation approach and used to separate and characterize a complicated peptide mixture from digestion of soluble proteins extracted from human urine. In this approach, two dimensions of separation (nanoflow liquid chromatography and ion mobility) are followed by collision induced dissociation (CID) and mass spectrometry (MS) analysis. From a preliminary analysis of the most intense CID-MS features in a part of the dataset, it is possible to assign 27 peptide ions which correspond to 13 proteins. The data contain many additional CID-MS features for less intense ions. A limited discussion of these features and their potential utility in identifying complicated peptide mixtures required for proteomics study is presented.  相似文献   

13.
The further development of derivatizing reagents for plasma amino acid quantification by tandem mass spectrometry is described. The succinimide ester of 4-methylpiperazineacetic acid (MPAS), the iTRAQ reagent, was systematically modified to improve tandem mass spectrometer (MS/MS) product ion intensity. 4-Methylpiperazinebutyryl succinimide (MPBS) and dimethylaminobutyryl succinimide (DMABS) afforded one to two orders of magnitude greater MS/MS product ion signal intensity than the MPAS derivative for simple amino acids. CD(3) analogues of the modified derivatizing reagents were evaluated for preparation of amino acid isotope-labelled quantifying standards. Acceptable accuracy and precision was obtained with d(3)-DMABS as the amino acid standards derivatizing reagent. The product ion spectra of the DMABS amino acid derivatives are diagnostic for structural isomers including valine/norvaline, alanine/sarcosine and leucine/isoleucine. Improved analytical sensitivity and specificity afforded by these derivatives may help to establish liquid chromatography tandem mass spectrometry (LC-MS/MS) with derivatization generated isotope-labelled standards a viable alternative to amino acids analysers.  相似文献   

14.
Peptide sequencing is the basis of mass spectrometry-driven proteomics. Here we show that in the linear ion trap-orbitrap mass spectrometer (LTQ Orbitrap) peptide ions can be efficiently fragmented by high-accuracy and full-mass-range tandem mass spectrometry (MS/MS) via higher-energy C-trap dissociation (HCD). Immonium ions generated via HCD pinpoint modifications such as phosphotyrosine with very high confidence. Additionally we show that an added octopole collision cell facilitates de novo sequencing.  相似文献   

15.
The development of a multidimensional approach involving high-performance liquid chromatography (LC), ion mobility spectrometry (IMS) and tandem mass spectrometry is described for the analysis of complex peptide mixtures. In this approach, peptides are separated based on differences in their LC retention times and mobilities (as ions drift through He) prior to being introduced into a quadrupole/octopole/time-of-flight mass spectrometer. The initial LC separation and IMS dispersion of ions is used to label ions for subsequent fragmentation studies that are carried out for mixtures of ions. The approach is demonstrated by examining a mixture of peptides generated from tryptic digestion of 18 commercially available proteins. Current limitations of this initial study and potential advantages of the experimental approach are discussed.  相似文献   

16.
Normal phase-high performance liquid chromatography (NP-HPLC) coupled to matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight (MALDI-TOF/TOF) tandem mass spectrometry is evaluated for the detailed structural characterization of various isomers of arabinoxylan (AX) oligosaccharides produced from endo-beta-(1-->4)-xylanase (endoxylanase) digestion of wheat AX. The fragmentation characteristics of these oligosaccharides upon MALDI-TOF/TOF high-energy collision induced dissociation (CID) were investigated using purified AX oligosaccharide standards labeled at the reducing end with 2-aminobenzoic acid (2-AA). A variety of cross-ring cleavages and 'elimination' ions in the fragment ion spectra provided extensive structural information, including Araf substitution patterns along the xylan backbone and comprehensive linkage assignment. The off-line coupling of this MALDI-CID technique to capillary normal phase HPLC enabled the separation and identification of isomeric oligosaccharides (DP 4-8) produced by endoxylanase digestion of AX. Furthermore, this technique was used to characterize structurally different isomeric AX oligosaccharides produced by endoxylanase enzymes with different substrate specificities.  相似文献   

17.
18.
Highly sensitive peptide fragmentation and identification in sequence databases is a cornerstone of proteomics. Previously, a two-layered strategy consisting of MALDI peptide mass fingerprinting followed by electrospray tandem mass spectrometry of the unidentified proteins has been successfully employed. Here, we describe a high-sensitivity/high-throughput system based on orthogonal MALDI tandem mass spectrometry (o-MALDI) and the automated recognition of fragments corresponding to the N- and C-terminal amino acid residues. Robotic deposition of samples onto hydrophobic anchor substrates is employed, and peptide spectra are acquired automatically. The pulsing feature of the QSTAR o-MALDI mass spectrometer enhances the low mass region of the spectra by approximately 1 order of magnitude. Software has been developed to automatically recognize characteristic features in the low mass region (such as the y1 ion of tryptic peptides), maintaining high mass accuracy even with very low count events. Typically, the sum of the N-terminal two ions (b2 ion), the third N-terminal ion (b3 ion), and the two C-terminal fragments of the peptide (y1 and y2) can be determined. Given mass accuracy in the low ppm range, peptide end sequencing on one or two tryptic peptides is sufficient to uniquely identify a protein from gel samples in the low silver-stained range.  相似文献   

19.
Beam-type collisional activation dissociation (HCD) offers many advantages over resonant excitation collision-activated dissociation, including improved identification of phosphorylated peptides and compatibility with isobaric tag-based quantitation (e.g. tandem mass tag (TMT) and iTRAQ). However, HCD typically requires specially designed and dedicated collision cells. Here we demonstrate that HCD can be performed in the ion injection pathway of a mass spectrometer with a standard atmospheric inlet (iHCD). Testing this method on complex peptide mixtures revealed similar identification rates to collision-activated dissociation (2883 versus 2730 IDs for iHCD/CAD, respectively) and precursor-product-conversion efficiency comparable to that achieved within a dedicated collision cell. Compared with pulsed-q dissociation, a quadrupole ion trap-based method that retains low-mass isobaric tag reporter ions, iHCD yielded isobaric tag for relative and absolute quantification reporter ions 10-fold more intense. This method involves no additional hardware and can theoretically be implemented on any mass spectrometer with an atmospheric inlet.  相似文献   

20.
Pachl F  Fellenberg K  Wagner C  Kuster B 《Proteomics》2012,12(9):1328-1332
Isobaric tagging using reagents such as tandem mass tags (TMT) and isobaric tags for relative and absolute quantification (iTRAQ) have become popular tools for mass spectrometry based quantitative proteomics. Because the peptide quantification information is collected in tandem mass spectra, the accuracy and precision of this method largely depend on the resolution with which precursor ions can be selected for the fragmentation and the specificity of the generated reporter ion. The latter can constitute an issue if near isobaric ion signals are present in such spectra because they may distort quantification results. We propose a simple remedy for this problem by identifying reporter ions via the accurate mass differences within a single tandem mass spectrum instead of applying fixed mass error tolerances for all tandem mass spectra. Our results show that this leads to unambiguous reporter ion identification and complete removal of interfering signals. This mode of data processing is easily implemented in software and offers advantages for protein quantification based on few peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号