首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated how Cd exposure affected oxidative biomarkers in Japanese flounder, Paralichthys olivaceus, at early life stages (ELS). Fish were exposed to waterborne Cd (0–48 µg L− 1) from embryonic to juvenile stages for 80 days. Growth, Cd accumulation, activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione S-transferase (GST, EC 2.5.1.18), and levels of glutathione (GSH) and lipid peroxidation (LPO) were investigated at three developmental stages. Flounder growth decreased and Cd accumulation increased with increasing Cd concentration. In metamorphosing larvae, CAT and SOD activities were inhibited and GSH level was elevated, while LPO was enhanced by increasing Cd concentrations. CAT and GST activities of settling larvae were inhibited but GSH level was elevated at high Cd concentrations. In juveniles, SOD activity and LPO level were increased but GST activity was inhibited as Cd concentration increased. Antioxidants in flounder at ELS were able to develop ductile responses to defend against oxidative stress, but LPO fatally occurred due to Cd exposure. These biochemical parameters could be used as effective oxidative biomarkers for evaluating Cd contamination and toxicity in marine environments: CAT, SOD, GSH, and LPO for metamorphosing stage; CAT, GSH, and GST for settling stage; and SOD, GST, and LPO for juvenile stage.  相似文献   

2.
研究了浓度为0、1、5、10、15、20 mg/L的新兴离子液体溴化1-己基-3-甲基咪唑([C6mim]Br)在24h、48h、72h和96h对斜生栅藻还原型谷胱甘肽(GSH)及其代谢酶-谷胱甘肽过氧化物酶(GPX)、谷胱甘肽转硫酶(GST)和谷胱甘肽还原酶(GR)的影响。结果表明:GSH含量在24h、48h和72h时,在最低处理浓度下不变,其他处理浓度下随胁迫浓度增加而降低,96h时则与对照无差异或较小;GPX和GST的活性在72h之前明显升高(最高浓度组的GST活性有波动),96h时均降低至对照水平;GR活性在24h时,[C6mim]Br=1 mg/L时升高,之后降低,在48h增高至对照水平,72h时,[C6mim]Br≥10 mg/L的处理组高于对照水平,96h时,除最低处理组外,均降至对照水平以下。GR是GSH系统中的限速酶,GST则是该系统中活性和灵敏性最高的酶,可作为[C6mim]Br胁迫时的敏感的生物标志物。1 mg/L的[C6mim]Br可引起藻细胞的氧化胁迫,具有环境毒性。  相似文献   

3.
The protective effects of resveratrol and 4-hexylresorcinol against oxidative DNA damage in human lymphocytes induced by hydrogen peroxide were investigated. Resveratrol and 4-hexylresorcinol showed no cytotoxicity to human lymphocytes at the tested concentration (10-100 μM). In addition, DNA damage in human lymphocytes induced by H 2 O 2 was inhibited by resveratrol and 4-hexylresorcinol. Resveratrol and 4-hexylresorcinol at concentrations of 10-100 μM induced an increase in glutathione (GSH) levels in a concentration-dependent manner. Moreover, these two compounds also induced activity of glutathione peroxidase (GPX) and glutathione reductase (GR). The activity of glutathione-S-transferase (GST) in human lymphocytes was induced by resveratrol. Resveratrol and 4-hexylresorcinol inhibited the activity of catalase (CAT). These data indicate that the inhibition of resveratrol and 4-hexylresorcinol on oxidative DNA damage in human lymphocytes induced by H 2 O 2 might be attributed to increase levels of GSH and modulation of antioxidant enzymes (GPX, GR and GST).  相似文献   

4.
Fish in the aquatic environment can be subjected to a multipollution state and the occurrence of sequential exposures is an important aspect of eco-toxicological research. In this context, a preceding exposure can affect a toxic response to a subsequent exposure. Therefore, the current study was based on sequential exposures, viz. to a PAH-like compound (beta-naphthoflavone, BNF) followed by a heavy metal (chromium, Cr), focusing on the assessment of oxidative stress responses and their role in induction of genotoxicity. Oxidative stress responses in gill and kidney were investigated in European eel (Anguilla anguilla L.), and measured as lipid peroxidation (LPO), glutathione peroxidase (GPX), catalase (CAT) and glutathione S-transferase (GST) activity, and reduced glutathione (GSH) concentration, whereas genotoxicity was measured as DNA strand breakage. Fish were exposed for 24 h to two Cr concentrations (100 microM, 1 mM), with or without pre-exposure to BNF (2.7 microM, 24 h). In gill, a GSH decrease was observed along with loss of DNA integrity at all exposure conditions except at the lowest Cr concentration, showing a crucial role of GSH over genotoxicity. Moreover, sporadic induction of antioxidant enzymes was not effective in the protection against genotoxicity. However, a different mechanism seems to occur in kidney, since the loss of DNA integrity detected for all exposed groups was not accompanied by alterations in antioxidant levels. With regards to peroxidative damage, both organs showed an LPO increase after sequential exposure to BNF and 100 microM Cr. However, no association between LPO induction and antioxidant responses could be established, showing that LPO is not predictable solely on the basis of antioxidant depletion. The interference of BNF pre-exposure with the response of organs to Cr showed a marked dependence on the Cr concentration. Gill showed synergistic effects on LPO and GPX increase, as well as on CAT and GSH decrease for the lowest Cr concentration. However, for the highest concentration an additive effect on decrease of DNA integrity and an antagonistic effect on the increase of GPX were observed. In kidney, synergistic effects were evident on LPO increase and GSH decrease for the lowest Cr concentration, as well as on CAT and GST decrease for the highest concentration. In contrast, an antagonistic action was observed on DNA integrity loss for both Cr concentrations. The current results are relevant in assessing the interactions of PAHs and metals and contribute to a better knowledge about oxidative stress and mechanisms of genotoxicity in fish.  相似文献   

5.
The effect of exogenous application of 28-Homobrassinolide (HBR) on radish (Raphanus sativus L.) seedlings under zinc (Zn2+) stress on glutathione (GSH) production, consumption and changes in redox status was investigated. Zinc toxicity resulted in oxidative burst as evidenced by increased accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) content. These stress indices were significantly decreased by HBR supplementation. Under Zn2+ stress, GSH pool was decreased, while the contribution of oxidized glutathione (GSSG) to total GSH increased (GSSH/GSH ratio), this translated into significant reduction of GSH redox homeostasis. In addition, an increase of phytochelatins (PCs) was observed. In radish seedlings under Zn2+ stress, the activities of gamma-glutamylcysteine synthetase (γ-ECS), glutathione synthetase (GS), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and cysteine (Cys) levels increased but the activity of glutathione reductase (GR) decreased. However, application of HBR increased the GSH pool and maintained their redox ratio by increasing the enzyme activities of GSH biosynthesis (γ-ECS and GS) and GSH metabolism (GR, GPX and GST). The results of present study are novel in being the first to demonstrate that exogenous application of HBR modulates the GSH synthesis, metabolism and redox homeostasis to confer resistance against Zn2+ induced oxidative stress.  相似文献   

6.
To investigate the antioxidative response of glutathione metabolism in Urtica dioica L. to a cadmium induced oxidative stress, activities of glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GSH-Px), content of reduced (GSH) and oxidized (GSSG) glutathione, lipid peroxidation (LPO), and also accumulation of Fe, Zn, Mn, Cu besides Cd were determined in the roots, stems, and leaves of plants exposed to 0 (control), 0.045, and 0.09 mM CdCl2 for 58 h. Whereas the Cd content continuously increased in all organs, the Fe, Zn, Mn, and Cu content decreased in dependence on the applied Cd concentration and incubation time. The Cd treatment resulted in increased GR and GST activities in all organs, however, GSH-Px activity was dependent on Cd concentration and plant organ. The GSH/GSSG ratio maintained above the control level in the stems at both Cd concentrations. The LPO was generally close to the control values in the roots and stems but it increased in the leaves especially at 0.09 mM Cd.  相似文献   

7.
镉对长江华溪蟹肝胰腺抗氧化酶活力的影响   总被引:9,自引:0,他引:9  
闫博  王兰  李涌泉  刘娜  王茜 《动物学报》2007,53(6):1121-1128
重金属对环境的污染已成为全球面临的首要问题之一,其中镉(Cd2 )是一种广泛存在的毒性污染物,能通过消化道和呼吸道进入生物体,对机体造成损伤(Zyadah and Abdel-Baky,2000)。研究表明,Cd2 可以通过Ca2 通道穿过细胞膜进入机体(Roesijadi and Robinson,1994),诱导产生大量自由基和活性氧(ROS),从而形成氧胁迫(Toppi andGabbrielli,1994;Hegedus et al.,2001)。ROS可以与体内脂质、蛋白质和核酸反应,导致脂质过氧化、细胞膜损伤并且影响多种酶的活力,对生物体造成威胁。由于在水生生态系统中生物富集污染物的作用明显,故相对于陆地生…  相似文献   

8.
Melatonin (MEL) displays antioxidant and free radical scavenger properties. In the present study, the effect of MEL on the oxidative stress induced by ochratoxin A (OTA) administration in rats was investigated. Four groups of 15 rats each were used: controls, MEL-treated rats (5 mg/kg body mass), OTA-treated rats (250 μg/kg) and MEL+OTA-treated rats. After 4 weeks of treatment, the levels of malondialdehyde (MDA), a lipid peroxidation product (LPO) were measured in serum and homogenates of liver and kidney. Also, the levels of glutathione (GSH), and activities of glutathione reductase (GR), glutathione peroxidase (GSPx), superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) in liver and kidney were determined. In OTA-treated rats, the levels of LPO in serum and in both liver and kidney were significantly increased compared to levels in controls. Concomitantly, the levels of GSH and enzyme activities of SOD, CAT, GSPx and GR in both liver and kidney were significantly decreased in comparison with controls. In rats received MEL+OTA, the changes in the levels of LPO in serum and in liver and kidney were not statistically significant compared to controls. Concomitantly, the levels of GSPx, GR and GST activities in both liver and kidney tissues were significantly increased in comparison with controls. Similar increases in GSPx, GR and GST activities were also observed in MEL-treated rats when compared with controls. In conclusion, the oxidative stress may be a major mechanism for the toxicity of OTA. MEL has a protective effect against OTA toxicity through an inhibition of the oxidative damage and stimulation of GST activities. Thus, clinical application of melatonin as therapy should be considered in cases of ochratoxicosis.  相似文献   

9.
Oxidative damage and antioxidant properties have been studied in Perna viridis subjected to short-term exposure to Hg along with temperature (72h) and long-term temperature exposures (14 days) as pollution biomarkers. The elevated thiobarbituric acid reactive substances (TBA-RS) levels observed in gills and digestive gland under exposure to Hg, individually and combined with temperature, as also long-term temperature stress have been assigned to the oxidative damage resulting in lipid peroxidation (LPX). Increased activities of antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione-S-transferase (GST) both in gills and digestive glands under long-term exposures to temperatures are more prominent to heat rather than cold stress suggesting activation of physiological mechanism to scavenge the ROS produced during heat stress. Also decreased values of reduced glutathione (GSH) on long exposures to temperature stress indicate utilisation of this antioxidant, either to scavenge oxiradicals or act in combination with other enzymes, was more than its production capacity under heat stress. The results suggest that temperature variation does alter the active oxygen metabolism by modulating antioxidant enzyme activities, which can be used as biomarker to detect sublethal effects of pollution.  相似文献   

10.
Nickel, a major environmental pollutant, is known for its clastogenic, toxic, and carcinogenic potential. In this article, we report the effect of Acorus calamus on nickel chloride (NiCl2)-induced renal oxidative stress, toxicity, and cell proliferation response in male Wistar rats. NiCl2 (250 micromol/kg body weight/mL) enhanced reduced renal glutathione content (GSH), glutathione- S-transferase (GST), glutathione reductase (GR), lipid peroxidation (LPO), H2O2 generation, blood urea nitrogen (BUN), and serum creatinine with a concomitant decrease in the activity of glutathione peroxidase (GPx) (p < 0.001). NiCl2 administration also dose-dependently induced the renal ornithine decarboxylase (ODC) activity several-fold as compared to salinetreated control rats. Similarly, renal DNA synthesis, which is measured in terms of [3H] thymidine incorporation in DNA, was elevated following NiCl2 treatment. Prophylactic treatment of rats with A. calamus (100 and 200 mg/kg body weight po) daily for 1 wk resulted in the diminution of NiCl2- mediated damage, as evident from the downregulation of glutathione content, GST, GR, LPO, H2O2 generation, BUN, serum creatinine, DNA synthesis (p < 0.001), and ODC activity (p < 0.01) with concomitant restoration of GPx activity. These results clearly demonstrate the role of oxidative stress and its relation to renal disfunctioning and suggest a protective effect of A. calamus on NiCl2-induced nephrotoxicity in a rat experimental model.  相似文献   

11.
利用模式生物拟南芥作为实验材料,通过测定谷胱甘肽-抗坏血酸代谢相关酶(GST、GPX、APX、GR、DHAR、MDHAR)的活性和GSH、ASA、MDA含量以及生物量等来研究过量表达具有过氧化物酶活性的盐地碱蓬谷胱甘肽转移酶基因(GST基因)对盐胁迫下转基因拟南芥氧化损伤的影响。结果显示,转基因拟南芥比野生型具有较高的GST、GPX以及MDHAR酶活性;前者还具有较多的还原型谷胱甘肽和抗坏血酸,并且谷胱甘肽库氧化水平较野生型高。盐胁迫不但部分抑制了野生型拟南芥的生长,同时也导致了大量脂质过氧化物的积累;而盐胁迫对转基因拟南芥的生长抑制不明显,也没有较多的脂质过氧化物的积累。结果表明,过量表达盐地碱蓬谷胱甘肽转移酶基因提高.广转基因拟南芥依赖于还原型谷胱甘肽的过氧化物清除途径,同时有可能改变了GSH和ASA的代谢途径,这两方面的作用导致了转基因拟南芥氧化损伤的降低,使转基因拟南芥在盐胁迫下保持较好的生长态势。  相似文献   

12.
Organophosphate (OP) pesticides are widely used as antiparasitic chemicals in finfish aquaculture. However, current antidotes cannot be applied to treat intoxicated fish. We showed in previous studies the importance of glutathione (GSH) metabolism in pesticide resistance of the European eel Anguilla anguilla L. The present work studied the effects of the antioxidant and glutathione pro-drug N-acetyl-L-cysteine (NAC) on the recovery of European eels exposed for 96 h to a sublethal concentration (0.17 mg l(-1); 20% of its 96 h LC50) of the OP pesticide dichlorvos (2,2-dichlorovinyl dimethyl phosphate; DDVP). This insecticide and acaricide decreased muscular GSH content and increased oxidised glutathione (GSSG), lowering the GSH:GSSG ratio, which is indicative of a condition of oxidative stress. Acetylcholinesterase (AChE) and glutathione reductase (GR) activities in the brain, which were biomarkers of neurotoxicity and oxidative stress, respectively, were also highly inhibited. Recovery in a 0.5 mM (81.6 mg l(-1)) NAC concentration ameliorated muscular GSH depletion, GSH:GSSG ratio, and the inhibition of brain AChE and GR activities. Hence, this is the first evidence of improved recovery of organophosphate-poisoned fish by bath treatments.  相似文献   

13.
14.
The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in antioxidant defense and methylglyoxal (MG) detoxification systems of wheat seedlings exposed to salt stress (150 and 300 mM NaCl, 4 days). Seedlings were pre-treated for 24 h with 1 mM sodium nitroprusside, a NO donor, and then subjected to salt stress. The ascorbate (AsA) content decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) and the GSH/GSSG ratio increased with an increase in the level of salt stress. The glutathione S-transferase (GST) activity increased significantly with severe salt stress (300 mM). The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT) and glutathione peroxidase (GPX) activities did not show significant changes in response to salt stress. The glutathione reductase (GR), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, especially at 300 mM NaCl, with a concomitant increase in the H2O2 and lipid peroxidation levels. Exogenous NO pre-treatment of the seedlings had little influence on the non-enzymatic and enzymatic components compared to the seedlings of the untreated control. Further investigation revealed that NO pre-treatment had a synergistic effect; that is, the pre-treatment increased the AsA and GSH content and the GSH/GSSG ratio, as well as the activities of MDHAR, DHAR, GR, GST, GPX, Gly I, and Gly II in most of the seedlings subjected to salt stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to salinity-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.  相似文献   

15.
Administration of lead (1.25 and 2.5 mumol/kg egg weight) to 14-day-old chick embryos enhanced the level of lipid peroxides (LPO) in tissues of liver, brain, and heart. Accumulation of LPO was maximum at 9 h after treatment with lead and returned to normal level by 72 h. Further, we have studied the levels of glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase. At 9 h posttreatment, the hepatic GR was reduced significantly with the induction of GST and considerable depletion of GSH. However, in brain and heart, both GR and GST activities were unaltered with significant reduction of GSH. Further, an increase of non-Se-dependent GPx and SOD activities were observed in liver, brain, and heart. Similarly, at 72 h, although the GPx activity was found decreased in liver and brain, the GST, catalase, and SOD activities were significantly increased in all the three tissues alike, suggesting tissue-specific changes of antioxidant defense components in response to lead treatment. Our results suggests that the elevated levels of GST, SOD, and catalase at 72 h were successful in bringing LPO levels back to normal.  相似文献   

16.
The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.  相似文献   

17.
The aim of the present work was to evaluate the effect of the water soluble fraction of hydrocarbons (WSF) on the antioxidant status of the freshwater prawn Macrobrachium borellii. First, seasonal variations were studied in a non-polluted area. Hepatopancreas and gills showed season-related fluctuations in catalase (CAT), glutathione-S-transferase (GST) activities and in lipid peroxidation levels (LPO), but not in superoxide dismutase (SOD). Then, adults were exposed semi-statically to sublethal doses for 7days. CAT, SOD, GST, and glutathione peroxidase (GPx) activities and LPO, reduced glutathione (GSH) and protein oxidation (PO) levels were determined. Exposed individuals showed significant increases in CAT, SOD, and GST activities in hepatopancreas and CAT activity in gills. GPx activity did not vary in either tissues. While LPO levels increased, GSH levels decreased significantly in hepatopancreas of exposed animals, but PO levels showed no variation. Induction of SOD was also assessed by Real-time PCR mRNA expression in hepatopancreas. The non-enzymatic antioxidant activity was also tested; ABTS 2,2'-azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid) was higher in hemolymph of treated-prawns compared to controls, but ferric reducing activity of plasma assay (FRAP) values did not change. Taken together, the present results indicated that the antioxidant defenses of M. borellii, mainly in hepatopancreas, were significantly affected by aquatic hydrocarbon contamination, regardless of the season.  相似文献   

18.
The purpose of this work was to evaluate the effect of 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP) on the activity of antioxidative system and lipid peroxidation in the leaves of reed canary grass (Phalaris arudinacea). The activity of catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), glutathione reductase (GR) and glutathione S-transferase (GST) as well as the content of glutathione, ascorbate and phenolic compounds were determined. An induced-increase in the APX, CAT, GPX and GR activities was stronger for PCP, while a significant increase in the GST activity was noted only for 2,4-DCP. Both compounds increased the content of phenolic compounds, oxidized and reduced glutathione as well as the content of ascorbic acid. PCP induced stronger increase in lipid peroxidation than 2,4-DCP. The observed changes revealed that chlorophenols induce oxidative stress and oxidative damage in the leaves of reed canary grass.  相似文献   

19.
The present study investigates the regulatory role of exogenous selenium (Se) in the antioxidant defense and methylglyoxal (MG) detoxification systems in rapeseed seedlings exposed to salt stress. Twelve-day-old seedlings, grown in Petri dishes, were supplemented with selenium (25 μM Na2SeO4) and salt (100 and 200 mM NaCl) separately and in combination, and further grown for 48 h. The ascorbate (AsA) content of the seedlings decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) increased with an increase in the level of salt stress, while the GSH/GSSG ratio decreased. In addition, the ascorbate peroxidase (APX) and glutathione S-transferase (GST) activity increased significantly with increased salt concentration (both at 100 and 200 mM NaCl), while glutathione peroxidase (GPX) activity increased only at moderate salt stress (100 mM NaCl). Glutathione reductase (GR) activity remained unchanged at 100 mM NaCl, while it was decreased under severe (200 mM NaCl) salt stress. Monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, whereas a sharp decrease of these activities was observed under severe salt stress (200 mM NaCl). Concomitant increases in the levels of H2O2 and lipid peroxidation (MDA) were also measured. Exogenous Se treatment alone had little effect on the non-enzymatic and enzymatic components. However, further investigation revealed that Se treatment had a synergistic effect: in salt-stressed seedlings, it increased the AsA and GSH contents; GSH/GSSG ratio; and the activities of APX, MDHAR, DHAR, GR, GST, GPX, CAT, Gly I, and Gly II. As a result, addition of Se in salt-stressed seedlings led to a reduction in the levels of H2O2 and MDA as compared to salt stress alone. These results suggest that the exogenous application of Se rendered the plants more tolerant to salt stress-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.  相似文献   

20.
To shed light on the association of lipid peroxidation and antioxidant status with the development of aberrant crypt foci (ACF), we studied the modulatory influence of resveratrol, supplemented in three dietary regimens (initiation, post-initiation and entire period) on 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis. Rats were administered DMH (20 mg/kg body weight, s.c.) for 15 weeks and were supplemented with resveratrol (8 mg/kg body weight, p.o. everyday) in three dietary regimens. Intestines and colons were analyzed for the levels of diene conjugates (DC), lipid hydroperoxides (LOOHs) and thiobarbituric acid reactive substances (TBARS). Enzymic antioxidants (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPX; glutathione S-transferase, GST; and glutathione reductase, GR) and non-enzymic reserve (reduced glutathione, GSH; ascorbate; and alpha-tocopherol) were also assessed in the intestine and colon. Unsupplemented DMH exposed rats showed significantly decreased levels/activities of tissue DC, LOOHs, TBARS, SOD, CAT, GSH, GR and significantly elevated (P<0.05) GPX, GST, alpha-tocopherol and ascorbate as compared to control rats. Resveratrol supplementation during the entire period of the study resulted in significant (P<0.01) modulation of lipid peroxidation markers and antioxidants status, which were paralleled with ACF suppression, as compared to DMH-alone treated rats. These results indicate that resveratrol effectively inhibits DMH-induced ACF and colonic tumor development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号