首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the past decade, Drosophila has emerged as an ideal model organism for studying the genetic components of sleep as well as its regulation and functions. In fruit flies, sleep can be conveniently estimated by measuring the locomotor activity of the flies using techniques and instruments adapted from the field of circadian behavior. However, proper analysis of sleep requires degrees of spatial and temporal resolution higher than is needed by circadian scientists, as well as different algorithms and software for data analysis. Here I describe how to perform sleep experiments in flies using techniques and software (pySolo and pySolo-Video) previously developed in my laboratory. I focus on computer-assisted video tracking to monitor fly activity. I explain how to plan a sleep analysis experiment that covers the basic aspects of sleep, how to prepare the necessary equipment and how to analyze the data. By using this protocol, a typical sleep analysis experiment can be completed in 5-7 d.  相似文献   

2.
Circadian rhythms in animals are regulated at the level of individual cells and by systemic signaling to coordinate the activities of multiple tissues. The circadian pacemakers have several physiological outputs, including daily locomotor rhythms. Several redox-active compounds have been found to function in regulation of circadian rhythms in cells, however, how particular compounds might be involved in regulating specific animal behaviors remains largely unknown. Here the effects of hydrogen peroxide on Drosophila movement were analyzed using a recently developed three-dimensional real-time multiple fly tracking assay. Both hydrogen peroxide feeding and direct injection of hydrogen peroxide caused increased adult fly locomotor activity. Continuous treatment with hydrogen peroxide also suppressed daily locomotor rhythms. Conditional over-expression of the hydrogen peroxide-producing enzyme superoxide dismutase (SOD) also increased fly activity and altered the patterns of locomotor activity across days and weeks. The real-time fly tracking system allowed for detailed analysis of the effects of these manipulations on behavior. For example, both hydrogen peroxide feeding and SOD over-expression increased all fly motion parameters, however, hydrogen peroxide feeding caused relatively more erratic movement, whereas SOD over-expression produced relatively faster-moving flies. Taken together, the data demonstrate that hydrogen peroxide has dramatic effects on fly movement and daily locomotor rhythms, and implicate hydrogen peroxide in the normal control of these processes.  相似文献   

3.
Neurobiology of the fruit fly's circadian clock   总被引:7,自引:0,他引:7  
Studying the fruit fly Drosophila melanogaster has revealed mechanisms underlying circadian clock function. Rhythmic behavior could be assessed to the function of several clock genes that generate circadian oscillations in certain brain neurons, which finally modulate behavior in a circadian manner. This review outlines how individual circadian pacemaker neurons in the fruit fly's brain control rhythm in locomotor activity and eclosion.  相似文献   

4.
Most life forms exhibit daily rhythms in cellular, physiological and behavioral phenomena that are driven by endogenous circadian (≡24 hr) pacemakers or clocks. Malfunctions in the human circadian system are associated with numerous diseases or disorders. Much progress towards our understanding of the mechanisms underlying circadian rhythms has emerged from genetic screens whereby an easily measured behavioral rhythm is used as a read-out of clock function. Studies using Drosophila have made seminal contributions to our understanding of the cellular and biochemical bases underlying circadian rhythms. The standard circadian behavioral read-out measured in Drosophila is locomotor activity. In general, the monitoring system involves specially designed devices that can measure the locomotor movement of Drosophila. These devices are housed in environmentally controlled incubators located in a darkroom and are based on using the interruption of a beam of infrared light to record the locomotor activity of individual flies contained inside small tubes. When measured over many days, Drosophila exhibit daily cycles of activity and inactivity, a behavioral rhythm that is governed by the animal''s endogenous circadian system. The overall procedure has been simplified with the advent of commercially available locomotor activity monitoring devices and the development of software programs for data analysis. We use the system from Trikinetics Inc., which is the procedure described here and is currently the most popular system used worldwide. More recently, the same monitoring devices have been used to study sleep behavior in Drosophila. Because the daily wake-sleep cycles of many flies can be measured simultaneously and only 1 to 2 weeks worth of continuous locomotor activity data is usually sufficient, this system is ideal for large-scale screens to identify Drosophila manifesting altered circadian or sleep properties.  相似文献   

5.
Mutations that abolish expression of an X-linked gene, FMR1, result in the pathogenesis of fragile X syndrome, the most common form of inherited mental retardation. To understand the normal function of the FMR1 protein, we have produced fly strains bearing deletions in a Drosophila homolog of FMR1 (dfmr1). Since fragile X patients show a number of abnormal behaviors including sleep problems, we investigated whether a loss-of-function mutation of dfmr1 affect circadian behavior. Here we show that under constant darkness (DD), a lack of dfmr1 expression causes arrhythmic locomotor activity, but in light:dark cycles, their behavioral rhythms appear normal. In addition, the clock-controlled eclosion rhythm is normal in DFMR1-deficient flies. These results suggest that DFMR1 plays a critical role in the circadian output pathway regulating locomotor activity in Drosophila.  相似文献   

6.
7.
8.
Light-activated large ventral lateral clock neurons (large LNv) modulate behavioral arousal and sleep in Drosophila while their counterparts, the small LNv (s-LNv) are important for circadian behavior. Recently, it has been proposed that the pattern of day-night locomotor behavioral activity is mediated by two anatomically distinct oscillators composed of a morning oscillator in the small LNv and an evening oscillator in the lateral dorsal neurons and an undefined number of dorsal pacemaker neurons. This contrasts with a circuit described by network models which are not as anatomically constrained. By selectively ablating the small LNv while sparing the large LNv, we tested the relative importance of the small and large LNv for regulating morning behavior of animals living in standard light/dark cycles. Behavioral anticipation of the onset of morning and the high amplitude morning startle response which coincides with light onset are preserved in small LNv functionally-ablated animals. However, the amplitude of the morning behavioral peak is severely attenuated in these animals during the transition from regular light/dark cycles to constant darkness, providing further support that small LNv are necessary for circadian behavior. The large LNv, in combination with the network of other circadian neurons, in the absence of functional small LNv are sufficient for the morning anticipation and the high amplitude light-activated morning startle response.  相似文献   

9.
10.
昆虫生物钟分子调控研究进展   总被引:3,自引:2,他引:1  
昆虫生物钟节律的研究是人类了解生物节律的重要途径。昆虫在生理和行为上具有广泛的节律活动,如运动、睡眠、学习记忆、交配、嗅觉等节律活动,其中昼夜活动行为节律的研究广泛而深入。昆虫乃至高等动物普遍具有保守的昼夜节律系统,昼夜生物钟节律主要包括输入系统:用于接受外界光和温度等环境信号并传入核心振荡器,使得生物时钟与环境同步;核心时钟系统:自我维持的昼夜振荡器;输出系统:将生物钟产生的信号传递出去而控制生物行为和生理的节律变化。早期分子和遗传学研究主要关注昼夜节律振荡器的分子机制及神经生物学,阐明了昼夜生物钟节律的主要分子机制及相关神经网络。最近更多的研究关注生物钟信号是如何输入和输出。本文以果蝇运动节律的相关研究为主要内容,围绕生物钟输入系统、振荡器、输出系统这3个组成部分对昆虫生物钟研究进展进行总结。  相似文献   

11.
Circadian clocks use a wide range of environmental cues, including cycles of light, temperature, food, and social interactions, to fine-tune rhythms in behavior and physiology. Although social cues have been shown to influence circadian clocks of a variety of organisms including the fruit fly Drosophila melanogaster, their mechanism of action is still unclear. Here, the authors report the results of their study aimed at investigating if daily cycles of presence and absence (PA) of conspecific male visitors are able to entrain the circadian locomotor activity rhythm of male hosts living under constant darkness (DD). The results suggest that PA cycles may not be able to entrain circadian locomotor activity rhythms of Drosophila. The outcome does not change when male hosts are presented with female visitors, suggesting that PA cycles of either sex may not be effective in bringing about stable entrainment of circadian clocks in D. melanogaster. However, in hosts whose clock phase has already been set by light/dark (LD) cycles, daily PA cycles of visitors can cause measurable change in the phase of subsequent free-running rhythms, provided that their circadian clocks are labile. Thus, the findings of this study suggest that D. melanogaster males may not be using cyclic social cues as their primary zeitgeber (time cue) for entrainment of circadian clocks, although social cues are capable of altering the phase of their circadian rhythms.  相似文献   

12.
The circadian clock regulates many aspects of life, including sleep, locomotor activity, and body temperature (BTR) rhythms1,2. We recently identified a novel Drosophila circadian output, called the temperature preference rhythm (TPR), in which the preferred temperature in flies rises during the day and falls during the night 3. Surprisingly, the TPR and locomotor activity are controlled through distinct circadian neurons3. Drosophila locomotor activity is a well known circadian behavioral output and has provided strong contributions to the discovery of many conserved mammalian circadian clock genes and mechanisms4. Therefore, understanding TPR will lead to the identification of hitherto unknown molecular and cellular circadian mechanisms. Here, we describe how to perform and analyze the TPR assay. This technique not only allows for dissecting the molecular and neural mechanisms of TPR, but also provides new insights into the fundamental mechanisms of the brain functions that integrate different environmental signals and regulate animal behaviors. Furthermore, our recently published data suggest that the fly TPR shares features with the mammalian BTR3. Drosophila are ectotherms, in which the body temperature is typically behaviorally regulated. Therefore, TPR is a strategy used to generate a rhythmic body temperature in these flies5-8. We believe that further exploration of Drosophila TPR will facilitate the characterization of the mechanisms underlying body temperature control in animals.  相似文献   

13.
Many behaviors and physiological processes including locomotor activity, feeding, sleep, mating, and migration are dependent on daily or seasonally reoccurring, external stimuli. In D. melanogaster, one of the best-studied circadian behaviors is locomotion. The fruit fly is considered a diurnal (day active/night inactive) insect, based on locomotor-activity recordings of single, socially naive flies. We developed a new circadian paradigm that can simultaneously monitor two flies in simple social contexts. We find that heterosexual couples exhibit a drastically different locomotor-activity pattern than individual males, females, or homosexual couples. Specifically, male-female couples exhibit a brief rest phase around dusk but are highly active throughout the night and early morning. This distinct locomotor-activity rhythm is dependent on the clock genes and synchronized with close-proximity encounters, which reflect courtship, between the male and female. The close-proximity rhythm is dependent on the male and not the female and requires circadian oscillators in the brain and the antenna. Taken together, our data show that constant exposure to stimuli emanating from the female and received by the male olfactory and other sensory systems is responsible for the significant shift in intrinsic locomotor output of socially interacting flies.  相似文献   

14.
The genetic, molecular and anatomical dissection of the circadian clock in Drosophila and other higher organisms relies on the quantification of rhythmic phenotypes. Here, we introduce the methods currently in use in our laboratories for the analysis of fly locomotor activity rhythms. This phenotype provides a relatively simple, automated, efficient, reliable and robust output for the circadian clock. Thus it is not surprising that it is the preferred readout for measuring rhythmicity under a variety of conditions for most fly clock laboratories. The procedure requires at least 10 days of data collection and several days for analysis. In this protocol we advise on fly maintenance and on experimental design when studying the genetics of behavioral traits. We describe the setup for studying locomotor activity rhythms in the fruit fly and we introduce the statistical methods in use in our laboratories for the analysis of periodic data.  相似文献   

15.
16.
Significant progress has been made in our understanding of the neurogenetics of circadian clocks in fruit flies Drosophila melanogaster. Several pacemaker neurons and clock genes have now been identified and their roles in the cellular and molecular clockwork established. Some recent findings suggest that the basic architecture of the clock is multi-oscillatory; the clock mechanisms in the ventral lateral neurons (LN(v)s) of the fly brain govern locomotor activity and adult emergence rhythms, while the peripheral oscillators located in antennal cells regulate olfactory rhythm. Among circadian phenomena exhibited by Drosophila, the egg-laying rhythm is unique in many ways: (i) this rhythm persists under constant light (LL), while locomotor activity and adult emergence become arrhythmic, (ii) its circadian periodicity is much longer than 24h, and (iii) while egg-laying is rhythmic under constant darkness, the expression of two core clock genes period (per) and timeless (tim), is non-oscillatory in the ovaries. In this paper, we review our current knowledge of the circadian regulation of egg-laying behavior in Drosophila, and provide some possible explanations for its self-sustained nature. We conclude by discussing the existing limitations in our understanding of the regulatory mechanisms and propose few approaches to address them.  相似文献   

17.
Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPARalpha) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPARalpha ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate also advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erbalpha was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPARalpha is involved in circadian clock control independently of the SCN and that PPARalpha could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS.  相似文献   

18.
Robust self-sustained oscillations are a ubiquitous characteristic of circadian rhythms. These include Drosophila locomotor activity rhythms, which persist for weeks in constant darkness (DD). Yet the molecular oscillations that underlie circadian rhythms damp rapidly in many Drosophila tissues. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms that underlie the differences between damped and self-sustaining oscillations remain largely unknown. A small cluster of neurons in adult Drosophila brain, the ventral lateral neurons (LNvs), is essential for self-sustained behavioral rhythms and has been proposed to be the primary pacemaker for locomotor activity rhythms. With an LNv-specific driver, we restricted functional clocks to these neurons and showed that they are not sufficient to drive circadian locomotor activity rhythms. Also contrary to expectation, we found that all brain clock neurons manifest robust circadian oscillations of timeless and cryptochrome RNA for many days in DD. This persistent molecular rhythm requires pigment-dispersing factor (PDF), an LNv-specific neuropeptide, because the molecular oscillations are gradually lost when Pdf01 mutant flies are exposed to free-running conditions. This observation precisely parallels the previously reported effect on behavioral rhythms of the Pdf01 mutant. PDF is likely to affect some clock neurons directly, since the peptide appears to bind to the surface of many clock neurons, including the LNvs themselves. We showed that the brain circadian clock in Drosophila is clearly distinguishable from the eyes and other rapidly damping peripheral tissues, as it sustains robust molecular oscillations in DD. At the same time, different clock neurons are likely to work cooperatively within the brain, because the LNvs alone are insufficient to support the circadian program. Based on the damping results with Pdf01 mutant flies, we propose that LNvs, and specifically the PDF neuropeptide that it synthesizes, are important in coordinating a circadian cellular network within the brain. The cooperative function of this network appears to be necessary for maintaining robust molecular oscillations in DD and is the basis of sustained circadian locomotor activity rhythms.  相似文献   

19.
As both a photoreceptor and pacemaker in the avian circadian clock system, the pineal gland is crucial for maintaining and synchronizing overt circadian rhythms in processes such as locomotor activity and body temperature through its circadian secretion of the pineal hormone melatonin. In addition to receptor presence in circadian and visual system structures, high-affinity melatonin binding and receptor mRNA are present in the song control system of male oscine passeriform birds. The present study explores the role of pineal melatonin in circadian organization of singing and calling behavior in comparison to locomotor activity under different lighting conditions. Similar to locomotor activity, both singing and calling behavior were regulated on a circadian basis by the central clock system through pineal melatonin, since these behaviors free-ran with a circadian period and since pinealectomy abolished them in constant environmental conditions. Further, rhythmic melatonin administration restored their rhythmicity. However, the rates by which these behaviors became arrhythmic and the rates of their entrainment to rhythmic melatonin administration differed among locomotor activity, singing and calling under constant dim light and constant bright light. Overall, the study demonstrates a role for pineal melatonin in regulating circadian oscillations of avian vocalizations in addition to locomotor activity. It is suggested that these behaviors might be controlled by separable circadian clockworks and that pineal melatonin entrains them all through a circadian clock.  相似文献   

20.
Clock genes that pleiotropically control circadian rhythm and the time of mating may cause allochronic reproductive isolation in the melon fly Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Flies with a shorter circadian period (ca. 22 h of locomotor activity rhythm) mated 5 h earlier in the day than those with a longer circadian period (ca. 30 h). Mate-choice tests demonstrated significant pre-mating isolation between populations with short and long circadian periods. Pre-mating isolation did not occur when the mating time was synchronized between the two populations by photoperiodic controls, indicating that reproductive isolation is due to variations in the time of mating and not any unidentified ethological difference between the two populations. We cloned the period (per) gene of B. cucurbitae that is homologous to the per gene in Drosophila. The relative level of per mRNA in the melon fly exhibited a robust daily fluctuation under light : dark conditions. The fluctuation of per expression under dark : dark conditions is closely correlated to the locomotor rhythm in B. cucurbitae. These results suggest that clock genes can cause reproductive isolation via the pleiotropic effect as a change of mating time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号