首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.  相似文献   

2.
Free propeptides are known to function as inhibitors of the parental mature cysteine cathepsins. This general rule, however, does not apply to the aminopeptidase cathepsin H. Screening of propeptide fragments for their inhibitory potency revealed no significant effect on the native mature cathepsin H. On the other hand, inhibitory interaction was established with recombinant cathepsin H that displays endopeptidase activity due to a lack of the mini-chain. This finding suggests that the propeptide-binding region is structurally rearranged during maturation processing and mini-chain formation, which impairs the effective recognition of mature cathepsin H by its own propeptide.  相似文献   

3.
Proregions of papain-like cysteine proteases are potent and often highly selective inhibitors of their parental enzymes. The molecular basis of their selectivity is poorly understood. For two closely related members of the cathepsin L-like subfamily we established strong selectivity differences. The propeptide of cathepsin S was observed to inhibit cathepsin L with a K(i) of 0.08 nM, yet cathepsin L propeptide inhibited cathepsin S only poorly. To identify the respective structural correlates we engineered chimeric propeptides and compared their inhibitory specificity with the wild-types. Specificity resided in the N-terminal part, strongly suggesting that the backbone of the prodomain was the underlying structure.  相似文献   

4.
Porphyromonas gingivalis is a major pathogen associated with chronic periodontitis. The organism’s cell-surface cysteine proteinases, the Arg-specific proteinases (RgpA, RgpB) and the Lys-specific proteinase (Kgp), which are known as gingipains have been implicated as major virulence factors. All three gingipain precursors contain a propeptide of around 200 amino acids in length that is removed during maturation. The aim of this study was to characterize the inhibitory potential of the Kgp and RgpB propeptides against the mature cognate enzymes. Mature Kgp was obtained from P. gingivalis mutant ECR368, which produces a recombinant Kgp with an ABM1 motif deleted from the catalytic domain (rKgp) that enables the otherwise membrane bound enzyme to dissociate from adhesins and be released. Mature RgpB was obtained from P. gingivalis HG66. Recombinant propeptides of Kgp and RgpB were produced in Escherichia coli and purified using nickel-affinity chromatography. The Kgp and RgpB propeptides displayed non-competitive inhibition kinetics with Ki values of 2.04 µM and 12 nM, respectively. Both propeptides exhibited selectivity towards their cognate proteinase. The specificity of both propeptides was demonstrated by their inability to inhibit caspase-3, a closely related cysteine protease, and papain that also has a relatively long propeptide. Both propeptides at 100 mg/L caused a 50% reduction of P. gingivalis growth in a protein-based medium. In summary, this study demonstrates that gingipain propeptides are capable of inhibiting their mature cognate proteinases.  相似文献   

5.
The prodomains of several cysteine proteases of the papain family have been shown to be potent inhibitors of their parent enzymes. An increased interest in cysteine proteases inhibitors has been generated with potential therapeutic targets such as cathepsin K for osteoporosis and cathepsin S for immune modulation. The propeptides of cathepsin S, L and K were expressed as glutathione S-transferase-fusion proteins in Escherichia coli. The proteins were purified on glutathione affinity columns and the glutathione S-transferase was removed by thrombin cleavage. All three propeptides were tested for inhibitor potency and found to be selective within the cathepsin L subfamily (cathepsins K, L and S) compared with cathepsin B or papain. Inhibition of cathepsin K by either procathepsin K, L or S was time-dependent and occurred by an apparent one-step mechanism. The cathepsin K propeptide had a Ki of 3.6-6.3 nM for each of the three cathepsins K, L and S. The cathepsin L propeptide was at least a 240-fold selective inhibitor of cathepsin K (Ki = 0.27 nM) and cathepsin L (Ki = 0.12 nM) compared with cathepsin S (Ki = 65 nM). Interestingly, the cathepsin S propeptide was more selective for inhibition of cathepsin L (Ki = 0.46 nM) than cathepsin S (Ki = 7.6 nM) itself or cathepsin K (Ki = 7.0 nM). This is in sharp contrast to previously published data demonstrating that the cathepsin S propeptide is equipotent for inhibition of human cathepsin S and rat and paramecium cathepsin L [Maubach, G., Schilling, K., Rommerskirch, W., Wenz, I., Schultz, J. E., Weber, E. & Wiederanders, B. (1997), Eur J. Biochem. 250, 745-750]. These results demonstrate that limited selectivity of inhibition can be measured for the procathepsins K, L and S vs. the parent enzymes, but selective inhibition vs. cathepsin B and papain was obtained.  相似文献   

6.
Propeptides of several proteases directly catalyze the protein folding reaction. Uncatalyzed folding traps these proteases into inactive molten-globule-like conformers that switch into active enzymes only when their cognate propeptides are added in trans. Although tight binding and proteolytic susceptibility forces propeptides to function as single turnover catalysts, the significance of their inhibitory function and the mechanism of activation remain unclear. Using pro-subtilisin as a model, we establish that precursor activation is a highly coordinated process that involves synchronized folding, autoprocessing, propeptide release, and protease activation. Our results demonstrate that activation is controlled by release of the first free active protease molecule. This triggers an exponential cascade that selectively targets the inhibitory propeptide in the autoprocessed complex as its substrate. However, a mutant precursor that enhances propeptide release can drastically reduce the folding efficiency by altering the synergy between individual stages. Our results represent the first demonstration that propeptide release, not precursor folding, is the rate-determining step and provides the basis for the proposed model for precise spatial and temporal activation that allows proteases to function as regulators of biological function.  相似文献   

7.
The proprotein convertase PC1/3 is synthesized as a large precursor that undergoes proteolytic processing of the signal peptide, the propeptide and ultimately the COOH-terminal tail, to generate the mature form. The propeptide is essential for protease folding, and, although cleaved by an autocatalytic process, it remains associated with the mature form acting as an auto-inhibitor of PC1/3. To further assess the role of certain residues in its interaction with its cognate enzyme, we performed an alanine scan on two PC1/3 propeptide potential cleavable sites ((50)RRSRR(54) and (61)KR(62)) and an acidic region (65)DDD(67) conserved among species. Upon incubation with PC1/3, the ensuing peptides exhibit equal inhibitory potency, lower potency, or higher potency than the wild-type propeptide. The K(i) values calculated varied between 0.15 and 16.5 nm. All but one mutant exhibited a tight binding behavior. To examine the specificity of mutants, we studied their reactivity toward furin, a closely related convertase. The mutation of certain residues also affects the inhibition behavior toward furin yielding propeptides exhibiting K(i) ranging from 0.2 to 24 nm. Mutant propeptides exhibited against each enzyme either different mode of inhibition, enhanced selectivity in the order of 40-fold for one enzyme, or high potency with no discrimination. Hence, we demonstrate through single amino acid substitution that it is feasible to modify the inhibitory behavior of propeptides toward convertases in such a way as to increase or decrease their potency, modify their inhibitory mechanisms, as well as increase their selectivity.  相似文献   

8.
Cysteine proteinases (CPs) are synthesized as zymogens and converted to mature proteinase forms by proteolytic cleavage and release of their pro domain peptides. A cDNA encoding a papain-like CP, called hgcp-Iv, was isolated from a Heterodera glycines J2 cDNA library, expressed and utilized to assess the ability of its propeptide to inhibit proteinase in its active form. The hgcp-Iv cDNA sequence encodes a polypeptide of 374 amino acids with the same domain organization as other cathepsin L-like CPs, including a hydrophobic signal sequence and a pro domain region. HGCP-Iv, produced in Escherichia coli as a fusion protein with thioredoxin, degrades the synthetic peptide benzyloxycarbonyl-Phe-Arg-7-amido-4-methylcoumarin and is inhibited by E-64, a substrate and inhibitor commonly used for functional characterization of CPs. Recombinant propeptides of HGCP-Iv, expressed in E. coli, presented high inhibitory activity in vitro towards its cognate enzyme and proteinase activity of Meloidogyne incognita females, suggesting its usefulness in inhibiting nematode CPs in biological systems. Cysteine proteinases from other species produced no noticeable activity.  相似文献   

9.
Catalytic domains of several prokaryotic and eukaryotic protease families require dedicated N-terminal propeptide domains or "intramolecular chaperones" to facilitate correct folding. Amino acid sequence analysis of these families establishes three important characteristics: (i) propeptides are almost always less conserved than their cognate catalytic domains, (ii) they contain a large number of charged amino acids, and (iii) propeptides within different protease families display insignificant sequence similarity. The implications of these findings are, however, unclear. In this study, we have used subtilisin as our model to redesign a peptide chaperone using information databases. Our goal was to establish the minimum sequence requirements for a functional subtilisin propeptide, because such information could facilitate subsequent design of tailor-made chaperones. A decision-based computer algorithm that maintained conserved residues but varied all non-conserved residues from a multiple protein sequence alignment was developed and utilized to design a novel peptide sequence (ProD). Interestingly, despite a difference of 5 pH units between their isoelectric points and despite displaying only 16% sequence identity with the wild-type propeptide (ProWT), ProD chaperones folding and functions as a potent subtilisin inhibitor. The computed secondary structures and hydrophobic patterns within these two propeptides are similar. However, unlike ProWT, ProD adopts a well defined alpha-beta conformation as an isolated peptide and forms a stoichiometric complex with mature subtilisin. The CD spectra of this complex is similar to ProWT.subtilisin. Our results establish that despite low sequence identity and dramatically different charge distribution, both propeptides adopt similar structural scaffolds. Hence, conserved scaffolds and hydrophobic patterns, but not absolute charge, dictate propeptide function.  相似文献   

10.
Cathepsin L-like cysteine proteinases contain an evolutionarily highly conserved alpha-helical motif in the proregion. This is called the ER(F/W)N(I/V)N motif according to the conserved amino acids along one side of the helix. We studied the function of this motif using site-directed mutagenesis experiments of human procathepsin S. We replaced each of these amino acids with alanine and constructed deletion mutants lacking parts of the helix. All mutants were expressed in HEK 293 cells, but only one, W52A, was not processed to mature cathepsin S, nor was it phosphorylated or secreted into the culture medium. W52 is part of the hydrophobic core in the propeptide region of cathepsin S comprising two additional tryptophan residues, W28 and W31, also conserved among cathepsin L-like cysteine peptidases. Replacement of the latter with alanine led to consequences similar to those with the W52A mutation. Recombinant propeptides containing mutations of one of the three tryptophan residues were three orders of magnitude less effective as inhibitors of mature cathepsin S than the wild-type propeptide. The results point to a dominant role of the respective hydrophobic stack in the proper folding, transport and maturation of procathepsin S and related cathepsin L-like cysteine proteinases.  相似文献   

11.
The cDNA of a cystein peptidase inhibitor was isolated from sugarcane and expressed in Escherichia coli. The protein, named canecystatin, has previously been shown to exert antifungal activity on the filamentous fungus Trichoderma reesei. Herein, the inhibitory specificity of canecystatin was further characterized. It inhibits the cysteine peptidases from plant source papain (Ki =3.3nM) and baupain (Ki=2.1x10(-8)M), but no inhibitory effect was observed on ficin or bromelain. Canecystatin also inhibits lysosomal cysteine peptidases such as human cathepsin B (Ki=125nM), cathepsin K (Ki=0.76nM), cathepsin L (Ki=0.6nM), and cathepsin V (Ki=1.0nM), but not the aspartyl peptidase cathepsin D. The activity of serine peptidases such as trypsin, chymotrypsin, pancreatic, and neutrophil elastases, and human plasma kallikrein is not affected by the inhibitor, nor is the activity of the metallopeptidases angiotensin converting enzyme and neutral endopeptidase. This is the first report of inhibitory activity of a sugarcane cystatin on cysteine peptidases.  相似文献   

12.
Mása M  Maresová L  Vondrásek J  Horn M  Jezek J  Mares M 《Biochemistry》2006,45(51):15474-15482
Propeptide blocks the active site in the inactive zymogen of cathepsin D and is cleaved off during zymogen activation. We have designed a set of peptidic fragments derived from the propeptide structure and evaluated their inhibitory potency against mature cathepsin D using a kinetic assay. Our mapping of the cathepsin D propeptide indicated two domains in the propeptide involved in the inhibitory interaction with the enzyme core: the active site "anchor" domain and the N-terminus of the propeptide. The latter plays a dominant role in propeptide inhibition (nanomolar Ki), and its high-affinity binding was corroborated by fluorescence polarization measurements. In addition to the inhibitory domains of propeptide, a fragment derived from the N-terminus of mature cathepsin D displayed inhibition. This finding supports its proposed regulatory function. The interaction mechanisms of the identified inhibitory domains were characterized by determining their modes of inhibition as well as by spatial modeling of the propeptide in the zymogen molecule. The inhibitory interaction of the N-terminal propeptide domain was abolished in the presence of sulfated polysaccharides, which interact with basic propeptide residues. The inhibitory potency of the active site anchor domain was affected by the Ala38pVal substitution, a propeptide polymorphism reported to be associated with the pathology of Alzheimer's disease. We infer that propeptide is a sensitive tethered ligand that allows for complex modulation of cathepsin D zymogen activation.  相似文献   

13.
Pro-aminopeptidase processing protease (PA protease) is a thermolysin-like metalloprotease produced by Aeromonas caviae T-64. The N-terminal propeptide acts as an intramolecular chaperone to assist the folding of PA protease and shows inhibitory activity toward its cognate mature enzyme. Moreover, the N-terminal propeptide strongly inhibits the autoprocessing of the C-terminal propeptide by forming a complex with the folded intermediate pro-PA protease containing the C-terminal propeptide (MC). In order to investigate the structural determinants within the N-terminal propeptide that play a role in the folding, processing, and enzyme inhibition of PA protease, we constructed a chimeric pro-PA protease by replacing the N-terminal propeptide with that of vibriolysin, a homologue of PA protease. Our results indicated that, although the N-terminal propeptide of vibriolysin shares only 36% identity with that of PA protease, it assists the refolding of MC, inhibits the folded MC to process its C-terminal propeptide, and shows a stronger inhibitory activity toward the mature PA protease than that of PA protease. These results suggest that the N-terminal propeptide domains in these thermolysin-like proteases may have similar functions, in spite of their primary sequence diversity. In addition, the conserved regions in the N-terminal propeptides of PA protease and vibriolysin may be essential for the functions of the N-terminal propeptide.  相似文献   

14.
Cappetta M  Roth I  Díaz A  Tort J  Roche L 《Biological chemistry》2002,383(7-8):1215-1221
The N-terminal propeptides of cysteine proteinases play regulatory roles in the folding and stability of their catalytic domains, as well as being potent and highly specific inhibitors of their parental mature enzymes. Cysteine proteinases play a major role in the biology of the parasitic trematode Fasciola hepatica; in particular, this organism secretes significant amounts of cathepsin L enzymes. The isolated propeptide of F. hepatica cathepsin L1 functioned as a chaperone for the mature enzyme in renaturation experiments. A double point mutation (N701/F721) within the GxNxFxD motif of the propeptide affected its conformation and markedly decreased its affinity for the mature enzyme. When this mutation was introduced into preprocathepsin L1 expressed in yeast, the secretion of active enzyme dropped dramatically. However, significant enzyme activity was recovered from the culture supernatants after denaturation and renaturation in the presence of native propeptide. Thus, the variant prosegment gave rise to an enzyme with altered conformation, which could be refolded to the active form with the assistance of the native propeptide.  相似文献   

15.
Aqualysin I, a thermostable homologue of subtilisin, requires its propeptide (ProA) to function as an intramolecular chaperone (IMC). To decipher the mechanisms through which propeptides can initiate protein folding, we characterized ProA in terms of its sequence, structure and function. Our results show that, in contrast to ProS (propeptide of subtilisin), ProA can fold spontaneously, reversibly and cooperatively into a stable monomeric alpha-beta conformation, even when isolated from its cognate protease-domain. ProA displays an indiscernible amount of tertiary structure with a considerable solvent-accessible hydrophobic surface, but is not a classical molten-globule folding intermediate. Moreover, despite showing only 21 % sequence identity with ProS, ProA can not only inhibit enzymatic activity with a magnitude tenfold greater than ProS, but can also chaperone subtilisin folding, albeit with a lower efficiency. The structure of ProA complexed with subtilisin is different from that of isolated ProA. Hence, additional interactions seem necessary to induce ProA into a compact structure. Our results also suggest that: (a) propeptides that are potent inhibitors are not necessarily better IMCs; (b) propeptides within the subtilase family appear polymorphic and; (c) the intrinsic instability within propeptides may be necessary for rapid activation of the cognate protein.  相似文献   

16.
The propeptides of lysosomal enzymes have been implicated in membrane association and mannose 6-phosphate-independent sorting to the lysosome (Rijnboutt, S., Aerts, H., Geuze, H. J., Tager, J. M., and Strous, G. J. (1991) J. Biol. Chem. 266, 4862-4868; McIntyre, G. F., and Erickson, A. H. (1991) J. Biol. Chem. 266, 15438-15445). In this report, the function of the propeptide of procathepsin D in sorting to the lysosome was directly assessed using a cathepsin D deletion mutant lacking the propeptide, and using a chimeric cDNA encoding the cathepsin D propeptide fused to the secretory protein alpha-lactalbumin. Proteins encoded by these cDNAs were expressed in mouse Ltk- cells and in human hepatoma Hep G2 cells, and then immunoprecipitated and analyzed by SDS-polyacrylamide gel electrophoresis. The deletion mutant was glycosylated but was rapidly degraded in a chloroquine-independent fashion and did not assume an active conformation. Thus the propeptide appeared to be necessary for correct folding. The chimeric protein was glycosylated and secreted. The coincidence of complex oligosaccharide modification and secretion of the chimeric protein suggested that it was slowly released from the endoplasmic reticulum and rapidly passed through the cell to the extracellular compartment. This was confirmed by immunofluorescent localization of the proteins. The data indicated that the propeptide appeared to be necessary for folding of cathepsin D but, unlike the yeast vacuolar propeptides, was not sufficient to direct a secretory protein to the lysosome in fibroblasts or in epithelial cells.  相似文献   

17.
Various targeting motifs have been identified for plant proteins delivered to the vacuole. For barley (Hordeum vulgare) lectin, a typical Gramineae lectin and defense-related protein, the vacuolar information is contained in a carboxyl-terminal propeptide. In contrast, the vacuolar targeting information of sporamin, a storage protein from the tuberous roots of the sweet potato (Ipomoea batatas), is encoded in an amino-terminal propeptide. Both proteins were expressed simultaneously in transgenic tobacco plants to enable analysis of their posttranslational processing and subcellular localization by pulse-chase labeling and electron-microscopic immunocytochemical methods. The pulse-chase experiments demonstrated that processing and delivery to the vacuole are not impaired by the simultaneous expression of barley lectin and sporamin. Both proteins were targeted quantitatively to the vacuole, indicating that the carboxyl-terminal and amino-terminal propeptides are equally recognized by the vacuolar protein-sorting machinery. Double-labeling experiments showed that barley lectin and sporamin accumulate in the same vacuole of transgenic tobacco (Nicotiana tabacum) leaf and root cells.  相似文献   

18.
Cystatins are natural inhibitors of papain-like (family C1) and legumain-related (family C13) cysteine peptidases. Cystatin D is a type 2 cystatin, a secreted inhibitor found in human saliva and tear fluid. Compared with its homologues, cystatin D presents an unusual inhibition profile with a preferential inhibition cathepsin S > cathepsin H > cathepsin L and no inhibition of cathepsin B or pig legumain. To elucidate the structural reasons for this specificity, we have crystallized recombinant human Arg(26)-cystatin D and solved its structures at room temperature and at cryo conditions to 2.5- and 1.8-A resolution, respectively. Human cystatin D presents the typical cystatin fold, with a five-stranded anti-parallel beta-sheet wrapped around a five-turn alpha-helix. The structures reveal differences in the peptidase-interacting regions when compared with other cystatins, providing plausible explanations for the restricted inhibitory specificity of cystatin D for some papain-like peptidases and its lack of reactivity toward legumain-related enzymes.  相似文献   

19.
Stanley TB  Humphries J  High KA  Stafford DW 《Biochemistry》1999,38(47):15681-15687
The binding of the gamma-glutamyl carboxylase to its protein substrates is mediated by a conserved 18 amino acid propeptide sequence found in all vitamin K-dependent proteins. We recently found that the apparent affinities of the naturally occurring propeptides for the carboxylase vary over a 100-fold range and that the propeptide of bone Gla protein has severely impaired affinity for the carboxylase [Stanley, T. B., et al. (1999) J. Biol. Chem. 274, 16940-16944 (1)]. Here we report a consensus propeptide sequence that binds tighter (K(i) = 0.43 nM) to the carboxylase than any known propeptide sequence. Comparing the factor IX propeptide to the propeptides of protein C, bone Gla protein, and prothrombin, the weakest binding propeptides, allowed us to predict which residues might be responsible for these substrates' relatively weak binding to the carboxylase. We then made propeptides with the predicted amino acid changes and determined their binding affinities. The reduced binding affinity of these propeptides relative to that of FIX is due to residues -15 in protein C, -10 and -6 in bone Gla protein, and -9 in prothrombin. A role for the -9 position was not previously recognized but is further shown by our identification of a new, naturally occurring mutation at this position in factor IX which causes a warfarin-sensitive hemophilia B phenotype. In addition, we find that propeptides with mutations found in warfarin-sensitive patients have reduced affinity for the carboxylase, suggesting a physiological relevance of propeptide binding affinity.  相似文献   

20.
Protealysin (PLN) belongs to the M4 family of peptidases that are commonly known as thermolysin-like proteases (TLPs). All TLPs are synthesized as precursors containing N-terminal propeptides. According to the primary structure of the N-terminal propeptides, the family is divided into two distinct groups. Representatives of the first group including thermolysin and all TLPs with known three-dimensional structures have long prosequences (∼200 amino acids). Enzymes of the second group, whose prototype is protealysin, have short (∼50 amino acids) propeptides. Here, we present the 1.8 Å crystal structure of PLN precursor (proPLN), which is the first three-dimensional structure of a TLP precursor. Whereas the structure of the catalytic domain of proPLN is similar overall to previously reported structures of mature TLPs, it has specific features, including the absence of calcium-binding sites, and different structures of the N-terminal region and substrate-binding site. PLN propeptide forms a separate domain in the precursor and likely acts as an inhibitor that blocks the substrate-binding site and fixes the “open” conformation of the active site, which is unfavorable for catalysis. Furthermore the conserved PPL motif identified in our previous studies directly interacts with the S′ subsites of the active center being a critical element of the propeptide-catalytic domain interface. Comparison of the primary structures of TLPs with short propeptides suggests that the specific features revealed in the proPLN crystal structure are typical for all protealysin-like enzymes. Thus, such proteins can be considered as a separate subfamily of TLPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号