首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Environmental filters act to limit the local community assemblage from the regional species pool by restricting the viable trait states that can occur there. In alpine snowpatches, the timing of snowmelt is a strong environmental filter. In coming decades, the strength of this filter is likely to relax with global climate change. We used three continuous plant functional traits (leaf area, plant height, seed mass) and their divergence (using the FDvar index) to document current patterns of community assembly and predict plant community responses to future environmental filters in alpine snowpatch vegetation. The community trait-weighted mean for leaf area and height, but not seed mass, was significantly higher in early snowmelt zones relative to mid and late melting zones across all snowpatches. Mean FDvar for height (but not leaf area or seed mass), by contrast, was substantially lower in early snowmelt zones, indicating that species growing in early melt zones are consistently taller than those growing in other zones. These results suggest that if climate change leads to earlier snowmelt and hence, a longer growing season, taller (more competitive) species with larger leaf areas (more productive) may replace short species in snowpatches as these plant communities re-assemble in response to changing environmental filters.  相似文献   

2.
3.
何芸雨  郭水良  王喆 《植物生态学报》2019,43(12):1021-1035
植物功能性状权衡关系反映了植物在资源获取与分配中采取的不同策略, 是近年来生态学研究的一个热点问题。该综述从研究范围、叶性状、器官和植物类群4个方面入手, 简要介绍植物功能性状关系研究在近10余年是如何在叶经济谱(LES)的基础上逐渐扩展和深入的。1)相关研究拓展到全球更多极端环境与特殊气候地区, 发现在不同的气候环境条件下, 植物叶片功能性状关系相对稳定, 植物种内的功能性状关系已被证实与LES相似; 2)功能性状网络从最初的6个经济性状扩展到叶片的分解、燃烧和水力等性状, 发现叶片的分解速率和可燃性均与叶片形态性状、养分含量等显著相关, 但叶片水力性状与经济性状的关系则取决于所研究的物种及生存环境的水分条件; 3)研究对象从植物叶片拓展到了根、茎、花、种子及植株整体, 叶片的比叶质量与茎的木质密度、种子大小相耦合, 但叶片形态性状与根和花的相关性状却无显著相关关系, 证明这些器官可能是独立进化的; 4) LES可以很好地解释特殊维管植物的生存适应策略: 入侵植物具有较高的资源利用效率和更快的相对生长速率, 在LES中处于“低投入-快速回报”的一端; 食虫植物的叶片特化为捕食器官, 光合作用及生长速率相对较低, 居于LES “高投入-缓慢回报”的另一端, 此外, 无论是最古老的种子植物苏铁属(Cycas)植物, 或是蕨类和变水植物(苔藓和地衣), 其功能性状关系都与LES大致相同。该文梳理了功能性状关系研究的进展脉络, 提出了一些建议, 期望为未来植物功能性状关系研究的选题和发展提供一些参考。  相似文献   

4.
So far, effects of species richness on ecosystem functioning have mainly been investigated in the short term in experimental communities from which invasion was prevented. We kept the local species pools of experimental grassland communities with 1, 2, 4, 8, and 32 species closed for five years and subsequently opened them for invasion by cessation of weeding. As long as communities were weeded, extinctions were rare but positively related to species richness, diversity-productivity relationships were positive, and more diverse systems had a greater temporal stability. Following cessation of weeding, species-poor communities were more prone to invasion. However, invasion increased extinction especially in species-rich communities. Within two years, differences in species richness and biomass production between sets of communities of different initial species richness disappeared and the positive diversity-productivity relationship was no longer detectable whereas species compositions remained distinct. This indicates that the positive diversity-productivity relationships during the weeding phase were mainly controlled by species richness.Bis anhin wurden die Effekte der Artenvielfalt auf das Funktionieren von Ökosystemen vor allem in kurzfristigen Experimenten untersucht, in denen die Einwanderung von Pflanzenarten in die bestehenden Gesellschaften verhindert wurde. Im vorliegenden Versuch wurden die lokalen Artenpools von 1, 2, 4, 8 und 32 Arten unserer experimentellen Graslandgesellschaften während 5 Jahren künstlich geschlossen gehalten und danach geöffnet indem nicht mehr gejätet wurde. Solange die Gesellschaften gejätet wurden, gab es wenige Aussterbeereignisse, die aber positiv mit der Artenvielfalt korreliert waren. Die Beziehung zwischen Diversität und Produktivität war positiv und Systeme höherer Diversität zeigten eine größere zeitliche Stabilität. Nach der Aufgabe des Jätens nahm die Einwanderung vor allem in artenarmen Gesellschaften zu. Die Einwanderung erhöhte jedoch besonders das Aussterben in ursprünglich artenreichen Gesellschaften. Innerhalb von zwei Jahren verschwanden die Unterschiede in der Artenzahl und Biomasseproduktion zwischen den verschiedenen Graslandgesellschaften und eine positive Beziehung zwischen Diversität und Produktivität war nicht mehr feststellbar. Die Artenzusammensetzung der Versuchsflächen blieb jedoch unterschiedlich. Das deutet darauf hin, daß die positive Beziehung zwischen Diversität und Produktivität während der ersten Phase des Experiments vor allem durch die Artenzahl und nicht durch die Artenzusammensetzung hervorgerufen wurde.  相似文献   

5.
Aim  Determining to what extent differing distribution patterns are governed by species’ life‐history and resource‐use traits may lead to an improved understanding of the impacts of environmental change on biodiversity. We investigated the extent to which traits can explain distribution patterns in the ladybird fauna (Coleoptera: Coccinellidae) of Great Britain. Location  The British mainland and inshore islands (Anglesey, the Isle of Wight and the Inner Hebrides). Methods  The distributions of 26 ladybird species resident in Britain were characterized in terms of their range size (from 2661 10‐km grid squares across Britain) and proportional range fill (at 10‐ and 50‐km scales). These were assessed relative to five traits (body length, elytral colour pattern polymorphism, voltinism, habitat specificity and diet breadth). The role of phylogenetic autocorrelation was examined by comparing the results of phylogenetic and generalized least‐squares regressions. Results  Diet breadth was the only trait correlated with range size: species with broad diets had larger range sizes than dietary specialists. Range fill was sensitive to recording intensity (a per‐species measure of the mean number of records across occupied squares); models including both recording intensity and range size provided more explanatory power than models incorporating ecological traits alone. Main conclusions  Habitat specificity is often invoked to explain the distribution patterns of species, but here we found diet breadth to be the only ecological correlate of both range fill and range size. This highlights the importance of understanding predator–prey interactions when attempting to explain the distribution patterns of predatory species. Our results suggest that the diet breadth of predatory species is a better correlate of range size and fill than other measures, such as habitat specificity.  相似文献   

6.
Microbial diversity-productivity relationships in aquatic ecosystems   总被引:1,自引:0,他引:1  
Thanks to recent advances in molecular biology, one's knowledge of microbial co-occurrence patterns, microbial biogeography and microbial biodiversity is expanding rapidly. This MiniReview explores microbial diversity-productivity relationships in the light of what is known from the general ecology literature. Analyses of microbial diversity-productivity relationships from 70 natural, experimental, and engineered aquatic ecosystems reveal patterns that are strikingly similar to those that have long been documented for communities of macroorganisms. Microbial ecology and the general science of ecology are thus continuing to converge.  相似文献   

7.
Previous research has found that plant diversity declines more quickly in exotic than native grassland plots, which offers a model system for testing whether diversity decline is associated with specific plant traits. In a common garden experiment in the Southern Great Plains in central Texas, USA, we studied monocultures and 9-species mixtures of either all exotic or all native grassland species. A total of 36 native and exotic species were paired by phylogeny and functional group. We used community-level measures (relative abundance in mixture) and whole-plant (height, aboveground biomass, and light capture) and leaf-level traits (area, specific leaf area, and C:N ratio) to determine whether trait differences explained native-exotic differences in functional group diversity. Increases in species’ relative abundance in mixture were correlated with high biomass, height, and light capture in both native and exotic communities. However, increasing exotic species were all C4 grasses, whereas, increasing native species included forb, C3 grass and C4 grass species. Exotic C4 grasses had traits associated with relatively high resource capture: greater leaf area, specific leaf area, height, biomass, and light capture, but similar leaf C:N ratios compared to native C4 grasses. Leaf C:N was consistently higher for native than exotic C3 species, implying that resource use efficiency was greater in natives than exotics. Our results suggest that functional diversity will differ between grasslands restored to native assemblages and those dominated by novel collections of exotic species, and that simple plant traits can help to explain diversity decline.  相似文献   

8.
9.
基于功能性状评价5种植物对热带珊瑚岛环境的适应性   总被引:8,自引:0,他引:8  
植被新建是保护和改善热带珊瑚岛生态系统的关键环节,热带珊瑚岛极端干旱生境是影响植物存活和定居的主要限制因子之一,因此选取适生植物对热带珊瑚岛植被新建至关重要。通过测定在海南省文昌市苗圃和热带珊瑚岛上的草海桐(Scaevola taccada)、厚藤(Ipomoea pescaprae)、木麻黄(Casuarina equisetifolia)、花生(Arachis hypogaea)、椰子(Cocos nucifera)5种植物的光合/水力相关功能性状,探讨植物对热带珊瑚岛生境的适应性。研究发现:与对照(文昌苗圃)相比,热带珊瑚岛上的草海桐、厚藤、木麻黄最大光合速率(A_(max))均显著升高;除椰子外,其余4种植物的比叶面积(SLA)降低,长期水分利用效率升高(其中木麻黄和花生升高显著);5种植物的叶片碳含量(LC)均有不同程度降低。此外,厚藤、木麻黄、椰子的叶片导水率(K_(leaf))显著升高;厚藤和花生的叶片膨压丧失点(Ψ_(tlp))显著降低;厚藤和木麻黄的气孔导度(g_s)显著升高。研究结果表明草海桐、椰子、花生主要通过非气孔调节方式(提高K_(leaf),降低Ψ_(tlp)、SLA等)适应热带珊瑚岛干旱环境;而厚藤和木麻黄同时通过气孔调节(降低g_s)及非气孔调节(提高K_(leaf),降低Ψ_(tlp)、SLA等)两种方式促进植物碳同化和水分利用。综上所述,草海桐、厚藤、木麻黄具有更高的光合能力和水分利用效率,能有效协调碳同化和水分利用,表现出良好的适应能力,适合用于热带珊瑚岛的植被新建。  相似文献   

10.
11.
Plant-soil feedbacks (PSFs) have gained attention for their role in plant community dynamics, but their role in productivity has been overlooked. We developed and tested a biomass-specific, multi-species model to examine the role of PSFs in diversity-productivity relationships. The model predicts a negative relationship between PSFs and overyielding: plants with negative PSFs grow more in communities than in monoculture (i.e. overyield), and plants with positive PSFs grow less in communities than in monoculture (i.e. underyield). This effect is predicted to increase with diversity and saturate at low species richness because the proportion of 'self-cultivated' soils rapidly decreases as species are added to a community. Results in a set of glasshouse experiments supported model predictions. We found that PSFs measured in one experiment were negatively correlated with overyielding in three-species plant communities measured in a separate experiment. Furthermore, when parametrized with our experimental PSF data, our model successfully predicted species-level overyielding and underyielding. The model was less effective at predicting community-level overyielding and underyielding, although this appeared to reflect large differences between communities with or without nitrogen-fixing plants. Results provide conceptual and experimental support for the role of PSFs in diversity-productivity relationships.  相似文献   

12.
13.
There is a general consensus that functional traits are reliable indicators of adaptation of organisms to particular environmental characteristics. In this study we relate the combined distributions of species traits of plants and animals to disturbance regimes in chestnut forests of southern Switzerland affected by regular winter fires. We used co‐inertia analysis for combining the trait response of 471 invertebrate species (117 001 individuals) and 81 plant species at 23 sites with different fire and cutting histories. Trait response was assessed by calculating the variation in weighted mean traits averaged over the communities and by using mean traits in multivariate analyses. The analysis showed a strong association between plant and animal traits under fire constraints (Monte‐Carlo test, p=0.0045). Plants and animal distributions show parallel trends in responses to fire which selects traits relating to persistence (ability to survive), resilience (ability to recover) and mobility. Warmth‐demanding insects, herbivores, flying carnivores and pollinators were associated with recent fires, as were annual, ruderal and light‐demanding plant species with long flowering duration. Small arthropods feeding on dead wood and those with narrow habitat requirements were associated with low fire frequency and unburnt sites, as were competitive plants with large seeds favoring moist sites. The spatial association between plant and animal traits reflected adaptations that promote survival in the disturbance regime, while the disturbance acts as an environmental filter on the distribution and assemblage of the trait values within communities. This combined analysis of plant and invertebrate traits distributions illustrates how community and ecosystem responses can be monitored and the results generalized across localities and disturbance types. Analyses of traits that cross trophic levels provide powerful and promising tools for validating management procedures and controlling ecosystem functions.  相似文献   

14.
Palozzi  Julia E.  Lindo  Zoë 《Plant and Soil》2017,420(1-2):277-287

Aims

Warming has the potential to alter plant litter mass loss and nutrient release during decomposition. However, a great deal of uncertainty remains concerning how other factors such as litter species or substrate quality might modify the effects of increased temperature on decomposition. Meanwhile, the temperature sensitivity of plant litter decay in tropical and subtropical forest ecosystems remains poorly resolved.

Methods

This study was designed to assess the effects of experimental warming on litter decomposition and nutrient release of two contrasting tree species (Schima superba and Machilus breviflora) by translocating model forest ecosystems from the high-elevation sites to the lower-elevation sites in subtropical China. Translocating model mountain evergreen broad-leaved forest (MEBF) to the altitude of 300 m and 30 m increased the average monthly soil temperature at 5 cm depth by 0.88 and 1.84 °C, respectively during the experimental period. Translocating model coniferous and broad-leaved mixed forest (CBMF) to the altitude of 30 m increased the average monthly soil temperature at 5 cm depth by 0.85 °C.

Results

We found that experimental warming accelerated litter decomposition in both model forest types, and the promoting efficiency was greater when the temperature increased. The litter with high quality (Schima superba) had stronger response to warming than low quality litter (Machilus breviflora). Warming accelerated Na, K, Mg, P, N and Ca release from Schima superba litter, but only simulated Ca release from Machilus breviflora litter. Overall, litter decomposition was controlled by the order: soil temperature > litter quality > soil moisture > litter incubation forest type under experimental warming in the subtropical China.

Conclusion

We conclude that leaf litter decomposition was facilitated by experimental warming in subtropical China. Litter species might modify the effects of increased temperature on litter decomposition; however, forest type has no effect on litter decomposition.
  相似文献   

15.
16.
Habitat fragmentation contributes to the decline of plant species by decreasing gene flow among populations. Restoring connectivity among habitat patches is therefore a major issue for plant conservation. However, deciding where to focus restoration efforts requires identifying suitable dispersers for each target plant species. We collected data from the literature on wild and domesticated ungulates, known to be effective seed dispersers, and on the plants they dispersed in Europe via epi‐ and/or endozoochory. We performed a systematic literature review to identify plant and animal traits relevant for seed dispersal. We first modeled the relationships between epi‐ or endozoochory and a priori selected plant traits (diaspore releasing height, length, shape and morphology, and habitat openness). The differences we underlined between the two dispersal mechanisms justified splitting our analyses accordingly. Then, for each dispersal mechanism, we asked whether basic plant traits could be used to predict specific traits of ungulates as endozoochorous or epizoochorous seed dispersers. We modeled the relationships between a priori selected ungulate traits for epizoochory (habitat openness, shoulder height, hair curliness, and hair length) and for endozoochory (habitat openness, body mass, feeding type and digestive system) and plant traits. Plant habitat openness and diaspore morphology were the predictors that most often explained differences among ungulates for epizoochory, whereas plant habitat openness and diaspore releasing height most often explained differences for endozoochory. Our trait‐based predictive models can help improve our ability to propose more precise management decisions for the conservation of plant populations worldwide by taking into account ungulate dispersers.  相似文献   

17.
Guo Q  Shaffer T  Buhl T 《Ecology letters》2006,9(12):1284-1292
Detailed knowledge of the relationship between plant diversity and productivity is critical for advancing our understanding of ecosystem functioning and for achieving success in habitat restoration efforts. However, effects and interactions of diversity, succession and biotic invasions on productivity remain elusive. We studied newly established communities in relation to preexisting homogeneous vegetation invaded by exotic plants in the northern Great Plains, USA, at four study sites for 3 years. We observed variant diversity–productivity relationships for the seeded communities (generally positive monotonic at three sites and non-monotonic at the other site) but no relationships for the resident community or the seeded and resident communities combined at all sites and all years. Community richness was enhanced by seeding additional species but productivity was not. The optimal diversity (as indicated by maximum productivity) changed among sites and as the community developed. The findings shed new light on ecosystem functioning of biodiversity under different conditions and have important implications for restoration.  相似文献   

18.
Aim Our aim was to address the potential effect of the geographical range size of species on the relationships between plant traits, soil and climate in Chinese grasslands. Previous analyses tended to examine plant–environment relationships across many species while ignoring that species with different range sizes may respond differently to the environment. Here we hypothesized that leaf traits of narrow‐ranging species would be more strongly correlated with soil and climatic variables than those of wide‐ranging species. Location Chinese grasslands. Methods Data on leaf traits, including nitrogen and phosphorus concentrations, carbon/nitrogen ratio, nitrogen/phosphorus ratio and specific leaf area, as well as species range sizes for 208 species distributed across 178 sites in Chinese grasslands were collected. Soil and climate information for each study site was also gathered. The effects of range size on leaf traits were tested using one‐way ANOVA. Correlations between leaf traits, soil and climate were calculated for all species pooled together and for species partitioned into range size quartiles, from the first (narrowest‐ ranging 25%) to the fourth (widest‐ranging 25%). Results Narrow‐ranging species tended to occur at high altitude with lower temperature but higher soil nutrient concentrations compared with wide‐ranging species. No direct link between leaf traits and species range sizes was detected. However, patterns of leaf–soil nutrient relationships changed significantly across levels of range size. Narrow‐ranging species tended to be more sensitive to variation in soil nutrient availability than wide‐ranging species, resulting in a shift from a positive leaf–soil nutrient relationship for narrow‐ranging plants to no relationship for wide‐ranging plants. Species responses to climatic variables were unrelated to their range sizes. Main conclusions The close relationship between leaf and soil nutrients indicates a specialization of narrow‐ranging species to particular habitats whereas wide‐ranging species may be able to better withstand changes in environment such as soil fertility over a large area.  相似文献   

19.
20.
  • Seed weight varies by several orders of magnitude among vascular plant species. However, the importance of potential drivers such as environmental conditions and plant functional traits have rarely been assessed for a larger taxonomic sample.
  • We collected seeds of 148 species from 237 sites spread across Mongolia and compared their weight among the major zonal vegetation types, taxonomic groups and a set of functional traits (growth form, dispersal mode, fruit type, storage organs and palatability).
  • Seed weight strongly varied among all functional traits and taxonomic groups, but no differences among vegetation zones were detected.
  • These results suggest a low impact of environmental conditions on the evolution of seed weight, contrasting the strong phylogenetic signal.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号