首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied natural killer (NK) activity, lymphoproliferative response, the release of several cytokines (IL-2, TNF alpha and IL-1 beta) and the ROS production in peritoneal leukocytes obtained 0, 2, 4, 12 and 24 h after lipopolysaccharide (LPS) injection. Lethal septic shock (100 % mortality occurred at 30 h after LPS administration) was caused in female BALB/c mice by intraperitoneal injection of 100 mg/kg of E. coli LPS. Cytotoxicity and lymphoproliferation assay were preformed together with the measurement of IL-1 beta, IL-2 and TNF alpha production, and quantification of ROS. Natural killer activity, spontaneous lymphoproliferative response, IL-2, TNF alpha, IL-beta release and ROS production were increased after LPS injection. In conclusions, ROS and proinflammatory mediators produced by immune cells in response to LPS are involved in the oxidative stress of endotoxic shock. This oxidative state alters some functional characteristics of leukocytes (proliferation and NK activity).  相似文献   

2.
TNF and IL-6 are considered to be important to the initiation or priming phase of liver regeneration. However, the signaling pathways that lead to the production of these cytokines after partial hepatectomy (PH) have not been identified. Enteric-derived LPS appears to be important to liver regeneration, possibly by stimulating proinflammatory cytokine production after surgery. To determine whether LPS signaling pathways are involved in the regulation of the proinflammatory cytokines TNF and IL-6 during the priming phase of liver regeneration, we performed PH on mice lacking the TLRs Tlr4 and Tlr2, the LPS coreceptor, Cd14, and Myd88, an adapter protein involved in most TLR and IL-1R pathways. In MyD88 knockout (KO) mice after PH, both liver Tnf mRNA and circulating IL-6 levels were severely depressed compared with heterozygous or wild-type mice. Activation of STAT-3 and three STAT-3 responsive genes, Socs3, Cd14, and serum amyloid A2 were also blocked. In contrast, Tlr4, Tlr2, and Cd14 KO mice showed no deficits in the production of IL-6. Surprisingly, none of these KO mice showed any delay in hepatocyte replication. These data indicate that the LPS receptor TLR4, as well as TLR2 and CD14, do not play roles in regulating cytokine production or DNA replication after PH. In contrast, MyD88-dependent pathways appear to be responsible for TNF, IL-6, and their downstream signaling pathways.  相似文献   

3.
A sugar cane extract (SCE) has been found to have an immunostimulating effect in several animals. Lipopolysaccharide (LPS) is known to induce endotoxin shock via the production of inflammatory modulators such as tumor necrosis factor (TNF)-alpha and nitric oxide (NO). We examined in the present study the effects of SCE on the TNF-alpha and NO production in LPS-stimulated mice peritoneal cells and the endotoxin shock in mice. The supplementation of SCE to peritoneal macrophages cultured with LPS resulted in a significant decrease in NO production. All the mice injected intraperitoneally with LPS and D-galactosamine (LPS+GalN) died within 24 h. However, a peritoneal injection, but no intravenous or oral administration, of SCE (500-1,000 mg/kg) at 3 to 48 h before the LPS+GalN-challenge resulted in a significantly improved survival rate. These results suggest that SCE had a protective effect on LPS-induced endotoxin shock via one of possible mechanisms involving the suppression of NO production in the mouse peritoneal cavity.  相似文献   

4.
Corneal infection with Pseudomonas aeruginosa perforates the cornea in susceptible C57BL/6 (B6), but not resistant BALB/c, mice. To determine whether vasoactive intestinal peptide (VIP) played a role in development of the resistant response, protein expression levels were tested by immunocytochemistry and enzyme immunoassay in BALB/c and B6 corneas. Both mouse strains showed constitutive expression of corneal VIP protein and nerve fiber distribution. However, disparate expression patterns were detected in the cornea after infection. VIP protein was elevated significantly in BALB/c over B6 mice at 5 and 7 days postinfection. Therefore, B6 mice were injected with rVIP and subsequently demonstrated decreased corneal opacity and resistance to corneal perforation compared with PBS controls. rVIP- vs PBS-treated B6 mice also demonstrated down-regulation of corneal mRNA and/or protein levels for proinflammatory cytokines/chemokines: IFN-gamma, IL-1beta, MIP-2, and TNF-alpha, whereas anti-inflammatory mediators, IL-10 and TGF-beta1, were up-regulated. Treatment with rVIP decreased NO levels and polymorphonuclear neutrophil (PMN) number. To further define the role of VIP, peritoneal macrophages (Mphi) and PMN from BALB/c and B6 mice were stimulated with LPS and treated with rVIP. Treatment of LPS-stimulated Mphi from both mouse strains resulted in decreased IL-1beta and MIP-2 protein levels; PMN responded similarly. Both cell types also displayed a strain-dependent differential response to rVIP, whereby B6 Mphi/PMN responded only to a higher concentration of VIP compared with cells from BALB/c mice. These data provide evidence that neuroimmune regulation of the cytokine network and host inflammatory cells functions to promote resistance against P. aeruginosa corneal infection.  相似文献   

5.

Background

The adapter proteins Appl1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif 1) and Appl2 are highly homologous and involved in several signaling pathways. While previous studies have shown that Appl1 plays a pivotal role in adiponectin signaling and insulin secretion, the physiological functions of Appl2 are largely unknown.

Results

In the present study, the role of Appl2 in sepsis shock was investigated by using Appl2 knockout (KO) mice. When challenged with lipopolysaccharides (LPS), Appl2 KO mice exhibited more severe symptoms of endotoxin shock, accompanied by increased production of proinflammatory cytokines. In comparison with the wild-type control, deletion of Appl2 led to higher levels of TNF-α and IL-1β in primary macrophages. In addition, phosphorylation of Akt and its downstream effector NF-κB was significantly enhanced. By co-immunoprecipitation, we found that Appl2 and Appl1 interacted with each other and formed a complex with PI3K regulatory subunit p85α, which is an upstream regulator of Akt. Consistent with these results, deletion of Appl1 in macrophages exhibited characteristics of reduced Akt activation and decreased the production of TNFα and IL-1β when challenged by LPS.

Conclusions

Results of the present study demonstrated that Appl2 is a critical negative regulator of innate immune response via inhibition of PI3K/Akt/NF-κB signaling pathway by forming a complex with Appl1 and PI3K.
  相似文献   

6.
A sugar cane extract (SCE) has been found to have an immunostimulating effect in several animals. Lipopolysaccharide (LPS) is known to induce endotoxin shock via the production of inflammatory modulators such as tumor necrosis factor (TNF)-α and nitric oxide (NO). We examined in the present study the effects of SCE on the TNF-α and NO production in LPS-stimulated mice peritoneal cells and the endotoxin shock in mice. The supplementation of SCE to peritoneal macrophages cultured with LPS resulted in a significant decrease in NO production. All the mice injected intraperitoneally with LPS and D-galactosamine (LPS+GalN) died within 24 h. However, a peritoneal injection, but no intravenous or oral administration, of SCE (500–1,000 mg/kg) at 3 to 48 h before the LPS+GalN-challenge resulted in a significantly improved survival rate. These results suggest that SCE had a protective effect on LPS-induced endotoxin shock via one of possible mechanisms involving the suppression of NO production in the mouse peritoneal cavity.  相似文献   

7.
8-Oxoguanine-DNA glycosylase (OGG-1) is a base excision DNA repair enzyme; however, its function in modulating allergic diseases remains undefined. Using OGG-1 knockout (KO) mice, we show that this protein affects allergic airway inflammation after sensitization and challenge by ovalbumin(OVA). OGG-1 KO mice exhibited less inflammatory cell infiltration and reduced oxidative stress in the lungs after OVA challenge compared to WT mice. The KO phenotype included decreased IL-4, IL-6, IL-10, and IL-17 in lung tissues. In addition, OGG-1 KO mice showed decreased expression and phosphorylation of STAT6 as well as NF-κB. Down-regulation of OGG-1 by siRNA lowered ROS and IL-4 levels but increased IFN-γ production in cultured epithelial cells after exposure to house dust mite extracts. OGG-1 may affect the levels of oxidative stress and proinflammatory cytokines during asthmatic conditions. OGG-1 deficiency negatively regulates allergen-induced airway inflammatory response.  相似文献   

8.
The proprotein convertase 1/3 is expressed in the regulated secretory pathway of neural and endocrine cells. Its major function is in the post-translational processing and activation of precursor proteins. The PC1/3 knock-out (KO) mouse model has allowed us to elucidate its physiological functions in studies focused primarily on neuroendocrine tissues. However, PC1/3 is also expressed in cells of the immune system, mainly in macrophages. The present study explores the effects of innate immune challenge in the PC1/3 KO mouse. PC1/3 KO mice have an enlarged spleen with marked disorganization of the marginal zone and red pulp. Immunohistochemical studies using various markers demonstrate a depletion of dendritic cells in PC1/3 KO spleens. When challenged with lipopolysaccharide, PC1/3 KO mice are more susceptible to septic shock than wild-type controls or other PC KO mice, such as PC2 and PC7 null mice. Plasma levels of proinflammatory cytokines (IL-6, IL-1β, and TNF-α) were very significantly elevated in PC1/3 KO mice, consistent with a hypercytokinemia, i.e. indicative of a major systemic uncontrolled inflammatory response or cytokine storm. Peritoneal macrophages isolated from PC1/3 KO mice also demonstrate elevated cytokine secretion when treated with LPS. Electron micrographs show morphological features indicating a prolonged activation of these cells following LPS stimulation. We also present evidence that the proinflammatory T(h)1 pathway is dominant in the PC1/3 KO mouse model. We conclude that aside from its important role in neuroendocrine functions PC1/3 also has an important role in the regulation of the innate immune system, most likely through the regulation of cytokine secretion in macrophages.  相似文献   

9.
In addition to stimulating IFN-gamma synthesis, IL-18 also possesses inflammatory effects by inducing synthesis of the proinflammatory cytokines TNF and IL-1beta and the chemokines IL-8 and macrophage inflammatory protein-1alpha. We hypothesized that neutralization of IL-18 would have a beneficial effect in lethal endotoxemia in mice. IL-1beta converting enzyme (ICE)-deficient mice, lacking the ability to process mature IL-18 and IL-1beta, were completely resistant to lethal endotoxemia induced by LPS derived from either Escherichia coli or Salmonella typhimurium. In contrast, both wild-type and IL-1beta-/- mice were equally susceptible to the lethal effects of LPS, implicating that absence of mature IL-18 or IFN-gamma but not IL-1beta in ICE-/- mice is responsible for this resistance. However, IFN-gamma-deficient mice were not resistant to S. typhimurium LPS, suggesting an IFN-gamma-independent role for IL-18. Anti-IL-18 Abs protected mice against a lethal injection of either LPS. Anti-IL-18 treatment also reduced neutrophil accumulation in liver and lungs. The increased survival was accompanied by decreased levels of IFN-gamma and macrophage inflammatory protein-2 in anti-IL-18-treated animals challenged with E. coli LPS, whereas IFN-gamma and TNF concentrations were decreased in treated mice challenged with S. typhimurium. In conclusion, neutralization of IL-18 during lethal endotoxemia protects mice against lethal effects of LPS. This protection is partly mediated through inhibition of IFN-gamma production, but mechanisms involving decreased neutrophil-mediated tissue damage due to the reduction of either chemokines (E. coli LPS) or TNF (S. typhimurium LPS) synthesis by anti-IL-18 treatment may also be involved.  相似文献   

10.
Inflammation characterized by the expression and release of cytokines and chemokines is implicated in the development and progression of atherosclerosis. Oxidatively modified low density lipoproteins, central to the formation of atherosclerotic plaques, have been reported to signal through Toll-like receptors (TLRs), TLR4 and TLR2, in concert with scavenger receptors to regulate the inflammatory microenvironment in atherosclerosis. This study evaluates the role of low density lipoproteins (LDL) and oxidatively modified LDL (oxmLDL) in the expression and release of proinflammatory mediators IκBζ, IL-6, IL-1β, TNFα, and IL-8 in human monocytes and macrophages. Although standard LDL preparations induced IκBζ along with IL-6 and IL-8 production, this inflammatory effect was eliminated when LDL was isolated under endotoxin-restricted conditions. However, when added with TLR4 and TLR2 ligands, this low endotoxin preparation of oxmLDL suppressed the expression and release of IL-1β, IL-6, and TNFα but surprisingly spared IL-8 production. The suppressive effect of oxmLDL was specific to monocytes as it did not inhibit LPS-induced proinflammatory cytokines in human macrophages. Thus, TLR ligand contamination of LDL/oxmLDL preparations can complicate interpretations of inflammatory responses to these modified lipoproteins. In contrast to providing a proinflammatory function, oxmLDL suppresses the expression and release of selected proinflammatory mediators.  相似文献   

11.
The biological properties of ailanthoidol, a neolignan from Zanthoxylum ailanthoides or Salvia miltiorrhiza Bunge, which is used in Chinese traditional herbal medicine, have not been evaluated. Here, we report that ailanthoidol inhibits inflammatory reactions in macrophages and protects mice from endotoxin shock. Our in vitro experiments showed that ailanthoidol suppressed the generation of nitric oxide (NO) and prostaglandin E(2) , as well as the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 induced by lipopolysaccharide (LPS) in RAW264.7 cells. Similarly, ailanthoidol inhibited the production of inflammatory cytokines induced by LPS in RAW264.7 cells, including interleukin (IL)-1β and IL-6. In an animal model, ailanthoidol protected BALB/c mice from LPS-induced endotoxin shock, possibly through inhibition of the production of inflammatory cytokines and NO. Collectively, ailanthoidol inhibited the production of inflammatory mediators and may be a potential target for treatment of various inflammatory diseases.  相似文献   

12.
Toll-like receptors (TLRs) are mammalian homologues of the Drosophila Toll receptors and are thought to have roles in innate recognition of bacteria. We demonstrated that TLR 2, 4, 6, and 8 but not TLR5 were expressed on mouse bone marrow-derived mast cells (BMMCs). Using BMMCs from the genetically TLR4-mutated strain C3H/HeJ, we demonstrated that functional TLR4 was required for a full responsiveness of BMMCs to produce inflammatory cytokines (IL-1beta, TNF-alpha, IL-6, and IL-13) by LPS stimulation. TLR4-mediated stimulation of mast cells by LPS was followed by activation of NF-kappaB but not by stress-activated protein kinase/c-Jun NH2-terminal kinase signaling. In addition, in the cecal ligation and puncture-induced acute septic peritonitis model, we demonstrated that genetically mast cell-deficient W/W(v) mice that were reconstituted with TLR4-mutated BMMCs had significantly higher mortality than W/W(v) mice reconstituted with TLR4-intact BMMCs. Higher mortality of TLR4-mutated BMMC-reconstituted W/W(v) mice was well correlated with defective neutrophil recruitment and production of proinflammatory cytokines in the peritoneal cavity. Taken together, these observations provide definitive evidence that mast cells play important roles in exerting the innate immunity by releasing inflammatory cytokines and recruitment of neutrophils after recognition of enterobacteria through TLR4 on mast cells.  相似文献   

13.
Patients with high level of serum endotoxin did not necessarily develop into lethal shock, whereas some patients died of septic shock even when their serum endotoxin levels were low. These results indicate that limiting factor which determines the host to be endotoxin shock principally depends on the host susceptibility to endotoxin instead of serum endotoxin level. To understand this susceptible status of the host to endotoxin, we used Propionibacterium acnes primed mouse endotoxin shock model. We found that P. acnes-primed mice responded to low dose of LPS by enhanced production of IL-1 and TNF. And such mice were highly susceptible to the lethal shock inducing effect of IL-1 and/or TNF, which also induced high level of serum IL-6 in these mice. Therefore, measurement of serum IL-6 level provides us with the information of the preceding exposure of the host to either LPS or IL-1 and/or TNF and the highly susceptible status of the host to these stimuli. Based on these results obtained from animal model, we investigated the relationship between serum IL-6 levels and serum endotoxin levels in the patients with malignant hematologic disorders. We found that these patients fell into two groups; an endotoxin susceptible group, equivalent to P. acnes-primed mice, showing high level of serum IL-6 with low level of serum endotoxin, and a nonendotoxin susceptible group, equivalent to P. acnes-nonprimed mice, showing low or undetectable level of serum IL-6 with high level of serum endotoxin. We propose that the measurement of serum IL-6 level in the patients positive for endotoxin is a useful tool in evaluating diagnosis and prognosis of endotoxin shock.  相似文献   

14.
β‐Arrestins are scaffolding proteins implicated as negative regulators of TLR4 signaling in macrophages and fibroblasts. Unexpectedly, we found that β‐arrestin‐1 (β‐arr‐1) and ‐2 knockout (KO) mice are protected from TLR4‐mediated endotoxic shock and lethality. To identify the potential mechanisms involved, we examined the plasma levels of inflammatory cytokines/chemokines in the wild‐type (WT) and β‐arr‐1 and ‐2 KO mice after lipopolysaccharide (LPS, a TLR4 ligand) injection. Consistent with lethality, LPS‐induced inflammatory cytokine levels in the plasma were markedly decreased in both β‐arr‐1 and ‐2 KO, compared to WT mice. To further explore the cellular mechanisms, we obtained splenocytes (separated into CD11b+ and CD11b? populations) from WT, β‐arr‐1, and ‐2 KO mice and examined the effect of LPS on cytokine production. Similar to the in vivo observations, LPS‐induced inflammatory cytokines were significantly blocked in both splenocyte populations from the β‐arr‐2 KO compared to the WT mice. This effect in the β‐arr‐1 KO mice, however, was restricted to the CD11b? splenocytes. Our studies further indicate that regulation of cytokine production by β‐arrestins is likely independent of MAPK and IκBα‐NFκB pathways. Our results, however, suggest that LPS‐induced chromatin modification is dependent on β‐arrestin levels and may be the underlying mechanistic basis for regulation of cytokine levels by β‐arrestins in vivo. Taken together, these results indicate that β‐arr‐1 and ‐2 mediate LPS‐induced cytokine secretion in a cell‐type specific manner and that both β‐arrestins have overlapping but non‐redundant roles in regulating inflammatory cytokine production and endotoxic shock in mice. J. Cell. Physiol. 225: 406–416, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
To determine why germfree mice are less susceptible to lipopolysaccharide (LPS) than conventional mice, we studied serum levels of serum amyloid A (SAA), tumor necrosis factor (TNF), interleukin 1 (IL-1), IL-6, and corticosterone in mice after treatment with LPS. A single injection of LPS caused an elevation of SAA, an acute-phase protein in the mouse, in both conventional and germfree IQI mice, and the response was significantly less in germfree mice. LPS-induced elevations of serum TNF, IL-1, and IL-6 levels were also significantly less in germfree mice, while serum corticosterone levels were greater in germfree mice than in conventional mice. These results suggest that the lower susceptibility to LPS and a smaller response of SAA elevation by LPS in germfree mice may result from less elevation in serum of these cytokines in these mice, which are known to mediate the acute phase response of SAA. High levels of serum corticosterone in germfree mice may be partly responsible for the lower responsiveness of these inflammatory cytokines to LPS in these mice.  相似文献   

16.
17.
CD137, a member of the TNF superfamily, is involved in T cell and NK cell activation and cytokine production. To establish its in vivo role in systems dependent on NK and NKT cells, we studied the response of CD137-/- mice to LPS-induced shock, tumor killing, and their IL-4-controlled Th2 responses. In both high and low dose shock models, all the CD137-deficient mice, but none of the wild-type BALB/c mice, survived. After injection of LPS/2-amino-2-deoxy-D-galactose (D-gal), CD137-/- mice had reduced serum cytokine levels and substantially impaired liver IFN-gamma and TNF-alpha mRNA levels. Phenotypic analysis of mononuclear cells revealed fewer NK and NKT cells in the CD137-/- mice. The knockout mice did not generate a rapid IL-4 response after systemic T cell activation, or effective Ag-specific Th2 responses. In addition, both in vitro and in vivo NK-specific cytolytic activities were reduced. These findings suggest that CD137-directed NK/NKT cells play an important role in the inflammatory response leading to the production of proinflammatory cytokines, LPS-induced septic shock, and tumor killing, as well as IL-4-dependent Th2 responses.  相似文献   

18.
High mobility group box 1 (HMGB1), an abundant, highly conserved cellular protein, is widely known as a nuclear DNA-binding protein. HMGB1 has been recently implicated as a proinflammatory cytokine because of its role as a late mediator of endotoxin lethality and ability to stimulate release of proinflammatory cytokines from monocytes. Production of central cytokines is a critical step in the pathway by which endotoxin and peripheral proinflammatory cytokines, including interleukin-1beta (IL-1) and tumor necrosis factor-alpha (TNF), produce sickness behaviors and fever. Intracerebroventricular (ICV) administration of HMGB1 has been shown to increase TNF expression in mouse brain and induce aphagia and taste aversion. Here we show that ICV injections of HMGB1 induce fever and hypothalamic IL-1 in rats. Furthermore, we show that intrathecal administration of HMGB1 produces mechanical allodynia (lowering of the response threshold to calibrated stimuli). Finally, while endotoxin (lipopolysaccharide, LPS) administration elevates IL-1 and TNF mRNA in various brain regions, HMGB1 mRNA is unchanged. It remains possible that HMGB1 protein is released in brain in response to LPS. Nonetheless, these data suggest that HMGB1 may play a role as an endogenous pyrogen and support the concept that HMGB1 has proinflammatory characteristics within the central nervous system.  相似文献   

19.
Necrotizing enterocolitis (NEC) is an emergency of the newborn that often requires surgery. Growth factors from stem cells may aid in decreasing intestinal damage while also promoting restitution. We hypothesized that 1) TNF, LPS, or hypoxia would alter bone marrow mesenchymal stem cell (BMSC) TNF, IGF-1, IL-6, and VEGF production, and 2) TNF receptor type 1 (TNFR1) or type 2 (TNFR2) ablation would result in changes to the patterns of cytokines and growth factors produced. BMSCs were harvested from female wild-type (WT), TNFR1 knockout (KO), and TNFR2KO mice. Cells were stimulated with TNF, LPS, or hypoxia. After 24 h, cell supernatants were assayed via ELISA. Production of TNF and IGF-1 was decreased in both knockouts compared with WT regardless of the stimulus utilized, whereas IL-6 and VEGF levels appeared to be cooperatively regulated by both the activated TNF receptor and the initial stimulus. IL-6 was increased compared with WT in both knockouts following TNF stimulation but was significantly decreased with LPS. Compared with WT, hypoxia increased IL-6 in TNFR1KO but not TNFR2KO cells. TNF stimulation decreased VEGF in TNFR2KO cells, whereas TNFR1 ablation resulted in no change in VEGF compared with WT. TNFR1 ablation resulted in a decrease in VEGF following LPS stimulation compared with WT; no change was noted in TNFR2KO cells. With hypoxia, TNFR1KO cells expressed more VEGF compared with WT, whereas no difference was noted between WT and TNFR2KO cells. TNF receptor ablation modifies BMSC cytokine production. Identifying the proper stimulus and signaling cascades for the production of desired growth factors may be beneficial in maximizing the therapeutic potential of stem cells.  相似文献   

20.
We investigated the requirement for tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1 receptors in the pathogenesis of the pulmonary and hepatic responses to Escherichia coli lipopolysaccharide (LPS) by studying wild-type mice and mice deficient in TNF type 1 receptor [TNFR1 knockout (KO)] or both TNF type 1 and IL-1 receptors (TNFR1/IL-1R KO). In lung tissue, NF-kappaB activation was similar among the groups after exposure to aerosolized LPS. After intraperitoneal injection of LPS, NF-kappaB activation in liver was attenuated in TNFR1 KO mice and further diminished in TNFR1/IL-1R KO mice; however, in lung tissue, no impairment in NF-kappaB activation was found in TNFR1 KO mice and only a modest decrease was found in TNFR1/IL-1R KO mice. Lung concentrations of KC and macrophage-inflammatory peptide 2 were lower in TNFR1 KO and TNFR1/IL-1R KO mice after aerosolized and intraperitoneal LPS. We conclude that LPS-induced NF-kappaB activation in liver is mediated through TNF-alpha- and IL-1 receptor-dependent pathways, but, in the lung, LPS-induced NF-kappaB activation is largely independent of these receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号