首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The role of inflammation in neurological disorders such as Alzheimer’s disease and Parkinson’s disease is gradually recognized and leads to an urgent challenge. Smad ubiquitination regulatory factor 1 (Smurf1), one member of the HECT family, is up-regulated by proinflammatory cytokines and associated with apoptosis in acute spinal cord injury. However, the function of Smurf1 through promoting neuronal necroptosis is still limited in the central nervous system (CNS). Hence, we developed a neuroinflammatory model in adult rats following lipopolysaccharide (LPS) lateral ventral injection to elaborate whether Smurf1 is involved in necroptosis in CNS injury. The up-regulation of Smurf1 detected in the rat brain cortex was similar to the necroptotic marker RIP1 expression in a time-dependent manner after LPS-induced neuroinflammation. Meanwhile, Smurf1 knockdown with siRNA inhibited neuronal necroptosis following LPS-stimulated rat pheochromocytomal PC12 cells. Thus, it was indicated that LPS-induced necroptosis could be promoted by Smurf1. In short, these studies suggest that Smurf1 might promote neuronal necroptosis after LPS-induced neuroinflammation, which might act as a novel and potential molecular target for the treatment of neuroinflammation associated diseases.  相似文献   

2.

Purpose

It is generally accepted that inflammation has a role in the progression of many central nervous system (CNS) diseases, although the mechanisms through which this occurs remain unclear. Among mitogen-activated protein kinase (MAPK) targets, mitogen- and stress-activated protein kinase (MSK1) has been thought to be involved in the pathology of inflammatory gene expression. In this study, the roles of MSK1 activation in neuroinflammation were investigated.

Methods

The bacterial lipopolysaccharide (LPS)-induced brain injury model was performed on Sprague-Dawley rats. The dynamic expression changes and the cellular location of p-MSK1 in the brain cortex were detected by Western blot and immunofluorescence staining. The synthesis of inflammatory cytokines in astrocytes was detected by enzyme-linked immunosorbent assay (ELISA).

Results

Phosphorylated MSK1 (p-MSK1 Thr-581) was induced significantly after intracerebral injection of LPS into the lateral ventricles of the rat brain. Specific upregulation of p-MSK1 in astrocytes was also observed in inflamed cerebral cortex. At 1 day after LPS stimulation, iNOS, TNFα expression, and the astrocyte marker glial fibrillary acidic protein (GFAP) were increased significantly. Also, in vitro studies indicated that the upregulation of p-MSK1 (Thr-581) may be involved in the subsequent astrocyte inflammatory process, following LPS challenge. Using an enzyme-linked immunosorbent assay (ELISA), it was confirmed that treatment with LPS in primary astrocytes stimulated the synthesis of inflammatory cytokines, through MAPKs signaling pathways. In cultured primary astrocytes, both knock-down of total MSK1 by small interfering RNAs (siRNA) or specific mutation of Thr-581 resulted in higher production of certain cytokines, such as TNFα and IL-6.

Conclusions

Collectively, these results suggest that MSK1 phosphorylation is associated with the regulation of LPS-induced brain injury and possibly acts as a negative regulator of inflammation.  相似文献   

3.
Astrogliosis, a cellular response characterized by astrocytic hypertrophy and accumulation of GFAP, is a hallmark of all types of central nervous system (CNS) injuries. Potential signaling mechanisms driving the conversion of astrocytes into “reactive” phenotypes differ with respect to the injury models employed and can be complicated by factors such as disruption of the blood-brain barrier (BBB). As denervation tools, neurotoxicants have the advantage of selective targeting of brain regions and cell types, often with sparing of the BBB. Previously, we found that neuroinflammation and activation of the JAK2-STAT3 pathway in astrocytes precedes up regulation of GFAP in the MPTP mouse model of dopaminergic neurotoxicity. Here we show that multiple mechanistically distinct mouse models of neurotoxicity (MPTP, AMP, METH, MDA, MDMA, KA, TMT) engender the same neuroinflammatory and STAT3 activation responses in specific regions of the brain targeted by each neurotoxicant. The STAT3 effects seen for TMT in the mouse could be generalized to the rat, demonstrating cross-species validity for STAT3 activation. Pharmacological antagonists of the neurotoxic effects blocked neuroinflammatory responses, pSTAT3tyr705 and GFAP induction, indicating that damage to neuronal targets instigated astrogliosis. Selective deletion of STAT3 from astrocytes in STAT3 conditional knockout mice markedly attenuated MPTP-induced astrogliosis. Monitoring STAT3 translocation in GFAP-positive cells indicated that effects of MPTP, METH and KA on pSTAT3tyr705 were localized to astrocytes. These findings strongly implicate the STAT3 pathway in astrocytes as a broadly triggered signaling pathway for astrogliosis. We also observed, however, that the acute neuroinflammatory response to the known inflammogen, LPS, can activate STAT3 in CNS tissue without inducing classical signs of astrogliosis. Thus, acute phase neuroinflammatory responses and neurotoxicity-induced astrogliosis both signal through STAT3 but appear to do so through different modules, perhaps localized to different cell types.  相似文献   

4.
Ha SK  Moon E  Lee P  Ryu JH  Oh MS  Kim SY 《Neurochemical research》2012,37(7):1560-1567
Under normal conditions in the brain, microglia play roles in homeostasis regulation and defense against injury. However, over-activated microglia secrete proinflammatory and cytotoxic factors that can induce progressive brain disorders, including Alzheimer's disease, Parkinson's disease and ischemia. Therefore, regulation of microglial activation contributes to the suppression of neuronal diseases via neuroinflammatory regulation. In this study, we investigated the effects of acacetin (5,7-dihydroxy-4'-methoxyflavone), which is derived from Robinia pseudoacacia, on neuroinflammation in lipopolysaccharide (LPS)-stimulated BV-2 cells and in animal models of neuroinflammation and ischemia. Acacetin significantly inhibited the release of nitric oxide (NO) and prostaglandin E(2) and the expression of inducible NO synthase and cyclooxygenase-2 in LPS-stimulated BV-2 cells. The compound also reduced proinflammatory cytokines, tumor necrosis factor-α and interleukin-1β, and inhibited the activation of nuclear factor-κB and p38 mitogen-activated protein kinase. In an LPS-induced neuroinflammation mouse model, acacetin significantly suppressed microglial activation. Moreover, acacetin reduced neuronal cell death in an animal model of ischemia. These results suggest that acacetin may act as a potential therapeutic agent for brain diseases involving neuroinflammation.  相似文献   

5.
Growing evidence indicates that neuroinflammation can alter adult neurogenesis by mechanisms as yet unclear. We have previously demonstrated that the neuroinflammatory response and neuronal damage after lipopolysaccharide (LPS) injection is reduced in cyclooxygenase-1 deficient (COX-1-/-) mice. In this study, we investigated the role of CoX-1 on hippocampal neurogenesis during LPS-induced neuroinflammation, using COX-1-/- and wild-type (WT) mice. We found that LPS-induced neuroinflammation resulted in the decrease of proliferation, survival and differentiation of hippocampal progenitor cells in WT but not in COX-1-/- mice. Thus, we demonstrate for the first time that COX-1 is involved in the inhibition of BrdU progenitor cells in proliferation and hippocampal neurogenesis after LPS. These results suggest that COX-1 may represent a viable therapeutic target to reduce neuroinflammation and promote neurogenesis in neurodegenerative diseases with a strong inflammatory component.Key words: neurogenesis, cyclooxygenase-1, lipopolysaccharide, inflammation, brain  相似文献   

6.
Growing evidence indicates that neuroinflammation can alter adult neurogenesis by mechanisms as yet unclear. We have previously demonstrated that the neuroinflammatory response and neuronal damage after lipopolysaccharide (LPS) injection is reduced in cyclooxygenase-1 deficient (COX-1-/-) mice. In this study, we investigated the role of COX-1 on hippocampal neurogenesis during LPS-induced neuroinflammation, using COX-1-/- and wild type (WT) mice. We found that LPS-induced neuroinflammation resulted in the decrease of proliferation, survival and differentiation of hippocampal progenitor cells in WT but not in COX-1-/- mice. Thus, we demonstrate for the first time that COX-1 is involved in the inhibition of BrdU progenitor cells in proliferation and hippocampal neurogenesis after LPS. These results suggest that COX-1 may represent a viable therapeutic target to reduce neuroinflammation and promote neurogenesis in neurodegenerative diseases with a strong inflammatory component.  相似文献   

7.
8.
Ras homolog enriched in the brain (Rheb) is a homolog of Ras GTPase that regulates cell growth, proliferation, and cell cycle via mammalian target of rapamycin (mTOR). Recently, it has been confirmed that Rheb activation not only promotes cellular proliferation and differentiation but also enhances cellular apoptosis in response to diverse toxic stimuli. However, the function of Rheb in the central nervous system (CNS) is still with limited understanding. To elaborate whether Rheb was involved in CNS injury, we performed a neuroinflammatory model by lipopolysaccharide (LPS) lateral ventral injection in adult rats. Upregulation of Rheb was observed in the brain cortex by performing western blotting and immunohistochemistry. Double immunofluorescent staining demonstrated that Rheb was mainly in active astrocytes and neurons. PCNA and active caspase-3 were upregulated, and co-labeling with Rheb, which indicated that Rheb might be relevant to astrocytic proliferation and neuronal apoptosis following the inflammatory response by LPS-induced. Furthermore, we also found that the expression profiles of cyclinD1 and CDK4 were parallel with that of Rheb in a time–space dependent manner. Finally, knocking down Rheb by siRNA and treatment with rapamycin or lovastatin showed that not only astrocytic proliferation decreased but also neuronal protection. Based on our data, we suggested that Rheb might play an important role in physiological and pathological functions following neuroinflammation caused by LPS, which might provide a potential target to the treatment of neuroinflammation.  相似文献   

9.
10.
In a rat model of acute neuroinflammation, produced by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide (LPS), we measured brain activities and protein levels of three phospholipases A2 (PLA2) and of cyclo-oxygenase-1 and -2, and quantified other aspects of brain phospholipid and fatty acid metabolism. The 6-day intracerebral ventricular infusion increased lectin-reactive microglia in the cerebral ventricles, pia mater, and the glial membrane of the cortex and resulted in morphological changes of glial fibrillary acidic protein (GFAP)-positive astrocytes in the cortical mantel and areas surrounding the cerebral ventricles. LPS infusion increased brain cytosolic and secretory PLA2 activities by 71% and 47%, respectively, as well as the brain concentrations of non-esterified linoleic and arachidonic acids, and of prostaglandins E2 and D2. LPS infusion also increased rates of incorporation and turnover of arachidonic acid in phosphatidylethanolamine, plasmenylethanolamine, phosphatidylcholine, and plasmenylcholine by 1.5- to 2.8-fold, without changing these rates in phosphatidylserine or phosphatidylinositol. These observations suggest that selective alterations in brain arachidonic acid metabolism involving cytosolic and secretory PLA2 contribute to early pathology in neuroinflammation.  相似文献   

11.
The blockade of adenosine A(2A) receptors (A2AR) affords a robust neuroprotection in different noxious brain conditions. However, the mechanisms underlying this general neuroprotection are unknown. One possible mechanism could be the control of neuroinflammation that is associated with brain damage, especially because A2AR efficiently control peripheral inflammation. Thus, we tested if the intracerebroventricular injection of a selective A2AR antagonist (SCH58261) would attenuate the changes in the hippocampus triggered by intraperitoneal administration of lipopolysaccharide (LPS) that induces neuroinflammation through microglia activation. LPS administration triggers an increase in inflammatory mediators like interleukin-1β that causes biochemical changes (p38 and c-jun N-terminal kinase phosphorylation and caspase 3 activation) contributing to neuronal dysfunction typified by decreased long-term potentiation, a form of synaptic plasticity. Long-term potentiation, measured 30 min after the tetanus, was significantly lower in LPS-treated rats compared with control-treated rats, while SCH58261 attenuated the LPS-induced change. The LPS-induced increases in phosphorylation of c-jun N-terminal kinase and p38 and activation of caspase 3 were also prevented by SCH58261. Significantly, SCH58261 also prevented the LPS-induced recruitment of activated microglial cells and the increase in interleukin-1β concentration in the hippocampus, indicating that A2AR activation is a pivotal step in mediating the neuroinflammation triggered by LPS. These results indicate that A2AR antagonists prevent neuroinflammation and support the hypothesis that this mechanism might contribute for the ability of A2AR antagonists to control different neurodegenerative diseases known to involve neuroinflammation.  相似文献   

12.
Neuroinflammation is an important pathological feature in neurodegenerative diseases. Accumulating evidence has suggested that neuroinflammation is mainly aggravated by activated microglia, which are macrophage like cells in the central nervous system. Therefore, the inhibition of microglial activation may be considered for treating neuroinflammatory diseases. p38 mitogen-activated protein kinase (MAPK) has been identified as a crucial enzyme with inflammatory roles in several immune cells, and its activation also relates to neuroinflammation. Considering the proinflammatory roles of p38 MAPK, its inhibitors can be potential therapeutic agents for neurodegenerative diseases relating to neuroinflammation initiated by microglia activation. This study was designed to evaluate whether NJK14047, a recently identified novel and selective p38 MAPK inhibitor, could modulate microglia-mediated neuroinflammation by utilizing lipopolysaccharide (LPS)-stimulated BV2 cells and an LPS-injected mice model. Our results showed that NJK14047 markedly reduced the production of nitric oxide and prostaglandin E2 by downregulating the expression of various proinflammatory mediators such as nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α and interleukin-1β in LPS-induced BV2 microglia. Moreover, NJK14047 significantly reduced microglial activation in the brains of LPS-injected mice. Overall, these results suggest that NJK14047 significantly reduces neuroinflammation in cellular/vivo model and would be a therapeutic candidate for various neuroinflammatory diseases.  相似文献   

13.
MAPK-activated protein kinase 2 (MAPKAP K2 or MK2) is one of several kinases directly regulated by p38 MAPK. A role for p38 MAPK in the pathology of Alzheimer disease (AD) has previously been suggested. Here, we provide evidence to suggest that MK2 also plays a role in neuroinflammatory and neurodegenerative pathology of relevance to AD. MK2 activation and expression were increased in lipopolysaccharide (LPS) + interferon gamma-stimulated microglial cells, implicating a role for MK2 in eliciting a pro-inflammatory response. Microglia cultured ex vivo from MK2-deficient (MK2-/-) mice demonstrated significant inhibition in release of tumor necrosis factor alpha, KC (mouse chemokine with highest sequence identity to human GROs and interleukin-8), and macrophage inflammatory protein 1alpha on stimulation with LPS + interferon gamma or amyloid-beta peptide (1-42) compared with MK2+/+ wild-type microglia. Consistent with an inhibition in pro-inflammatory mediator release, cortical neurons co-cultured with LPS + interferon gamma-stimulated or amyloid-beta peptide (1-42)-stimulated MK2-/- microglia were protected from microglial-mediated neuronal cell toxicity. In a transgenic mouse model of AD in which amyloid precursor protein and presenilin-1 harboring familial AD mutations are overexpressed in specific regions of the brain, elevated activation and expression of MK2 correlated with beta-amyloid deposition, microglial activation, and up-regulation of tumor necrosis factor alpha, macrophage inflammatory protein 1alpha, and KC gene expression in the same brain regions. Our data propose a role for MK2 in AD brain pathology, for which neuroinflammation involving cytokines and chemokines and overt neuronal loss have been documented.  相似文献   

14.
15.
Paradols are non-pungent and biotransformed metabolites of shogaols and reduce inflammatory responses as well as oxidative stress as shogaols. Recently, shogaol has been noted to possess therapeutic potential against several central nervous system (CNS) disorders, including cerebral ischemia, by reducing neuroinflammation in microglia. Therefore, paradol could be used to improve neuroinflammation-associated CNS disorders. Here, we synthesized paradol derivatives (2- to 10-paradols). Through the initial screening for anti-inflammatory activities using lipopolysaccharide (LPS)-stimulated BV2 microglia, 6-paradol was chosen to be the most effective compound without cytotoxicity. Pretreatment with 6-paradol reduced neuroinflammatory responses in LPS-stimulated BV2 microglia by a concentration-dependent manner, which includes reduced NO production by inhibiting iNOS upregulation and lowered secretion of proinflammatory cytokines (IL-6 and TNF-α). To pursue whether the beneficial in vitro effects of 6-paradol leads towards in vivo therapeutic effects on transient focal cerebral ischemia characterized by neuroinflammation, we employed middle cerebral artery occlusion (MCAO)/reperfusion (M/R). Administration of 6-paradol immediately after reperfusion significantly reduced brain damage in M/R-challenged mice as assessed by brain infarction, neurological deficit, and neural cell survival and death. Furthermore, as observed in cultured microglia, 6-paradol administration markedly reduced neuroinflammation in M/R-challenged brains by attenuating microglial activation and reducing the number of cells expressing iNOS and TNF-α, both of which are known to be produced in microglia following M/R challenge. Collectively, this study provides evidences that 6-paradol effectively protects brain after cerebral ischemia, likely by attenuating neuroinflammation in microglia, suggesting it as a potential therapeutic agent to treat cerebral ischemia.  相似文献   

16.
Female sex is associated with improved outcome in experimental brain injury models, such as traumatic brain injury, ischemic stroke, and intracerebral hemorrhage. This implies female gonadal steroids may be neuroprotective. A mechanism for this may involve modulation of post-injury neuroinflammation. As the resident immunomodulatory cells in central nervous system, microglia are activated during acute brain injury and produce inflammatory mediators which contribute to secondary injury including proinflammatory cytokines, and nitric oxide (NO) and prostaglandin E2 (PGE2), mediated by inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. We hypothesized that female gonadal steroids reduce microglia mediated neuroinflammation. In this study, the progesterone’s effects on tumor necrosis factor alpha (TNF-α), iNOS, and COX-2 expression were investigated in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Further, investigation included nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways. LPS (30 ng/ml) upregulated TNF-α, iNOS, and COX-2 protein expression in BV-2 cells. Progesterone pretreatment attenuated LPS-stimulated TNF-α, iNOS, and COX-2 expression in a dose-dependent fashion. Progesterone suppressed LPS-induced NF-κB activation by decreasing inhibitory κBα and NF-κB p65 phosphorylation and p65 nuclear translocation. Progesterone decreased LPS-mediated phosphorylation of p38, c-Jun N-terminal kinase and extracellular regulated kinase MAPKs. These progesterone effects were inhibited by its antagonist mifepristone. In conclusion, progesterone exhibits pleiotropic anti-inflammatory effects in LPS-stimulated BV-2 microglia by down-regulating proinflammatory mediators corresponding to suppression of NF-κB and MAPK activation. This suggests progesterone may be used as a potential neurotherapeutic to treat inflammatory components of acute brain injury.  相似文献   

17.
18.
Inflammation is a hallmark of several disease states ranging from neurodegeneration to sepsis but is also implicated in physiological processes like ageing. Non-resolving inflammation and prolonged neuroinflammation are unclear processes implicated in several conditions, including ageing. In this study we studied the long-term effects of endotoxemia, as systemic lipopolysaccharide (LPS) injection, focusing on the role of astrocyte activation and cytokine release in the brain of aged rats. A single dose of LPS (2 mg/kg) or 0.9% saline was injected intraperitoneally in aged rats. Levels of pro-inflammatory cytokines (TNFα and IL-1β) and NF-κB p65 activation were measured systemically and in hippocampal tissue. Astrocytes and cytokines release in the CNS were detected via double immunofluorescence staining at different time-points up to day 30. Serum levels of TNFα and IL-1β were significantly increased acutely after 30 minutes (p<0.001) and up to 6 hours (p<0.001) following LPS-injection. Centrally, LPS-treated rats showed up-regulated mRNA expression and protein levels of pro-inflammatory cytokines in the hippocampus. These changes associated with astrogliosis in the hippocampus dentate gyrus (DG), IL-1β immunoreactivity and elevated NF-κB p65 expression up to day 30 post LPS exposure. Overall, these data demonstrate that LPS induces prolonged neuroinflammation and astrocyte activation in the hippocampus of aged rats. Hippocampal NF-κB p65 and excessive astrocytes-derived IL-1β release may play a pivotal role in regulating long-lasting neuroinflammation.  相似文献   

19.
Interleukin-17A (IL-17A) is a key cytokine modulating the course of inflammatory diseases. Whereas effector functions of IL-17A like induction of antimicrobial peptides and leukocyte infiltration could clearly be demonstrated for peripheral organs, CNS specific effects are not well defined and appear controversial. To further clarify the functional significance of IL-17A in the CNS, we generated a transgenic mouse line with astrocyte-restricted expression of the IL-17A gene. GFAP/IL-17A transgenic mice develop normally and do not show any signs of neurological dysfunction. However, histological characterization revealed astrocytosis and activation of microglia. Demyelination, neurodegeneration or prominent tissue damage was not observed but a vascular pathology mimicking microangiopathic features was evident. Histological and flow cytometric analysis demonstrated the absence of parenchymal infiltration of immune cells into the CNS of GFAP/IL-17A transgenic mice. In GFAP/IL-17A mice, LPS-induced endotoxemia led to a more pronounced microglial activation with expansion of a distinct CD45high/CD11b+ population and increased induction of proinflammatory cytokines compared with controls. Our data argues against a direct role of IL-17A in mediating tissue damage during neuroinflammation. More likely IL-17A acts as a modulating factor in the network of induced cytokines. This novel mouse model will be a very useful tool to further characterize the role of IL-17A in neuroinflammatory disease models.  相似文献   

20.

Background

Reactive astrocytes are implicated in the development and maintenance of neuroinflammation in the demyelinating disease multiple sclerosis (MS). The sphingosine kinase 1 (SphK1)/sphingosine1-phosphate (S1P) receptor signaling pathway is involved in modulation of the inflammatory response in many cell types, but the role of S1P receptor subtype 3 (S1P3) signaling and SphK1 in activated rat astrocytes has not been defined.

Methodology/Principal Findings

Using immunohistochemistry we observed the upregulation of S1P3 and SphK1 expression on reactive astrocytes and SphK1 on macrophages in MS lesions. Increased mRNA and protein expression of S1P3 and SphK1, as measured by qPCR and Western blotting respectively, was observed after treatment of rat primary astrocyte cultures with the pro-inflammatory stimulus lipopolysaccharide (LPS). Activation of SphK by LPS stimulation was confirmed by SphK activity assay and was blocked by the use of the SphK inhibitor SKI (2-(p-hydroxyanilino)-4-(p-chlorphenyl) thiazole. Treatment of astrocytes with a selective S1P3 agonist led to increased phosphorylation of extracellular signal-regulated kinase (ERK)-1/2), which was further elevated with a LPS pre-challenge, suggesting that S1P3 upregulation can lead to increased functionality. Moreover, astrocyte migration in a scratch assay was induced by S1P and LPS and this LPS-induced migration was sensitive to inhibition of SphK1, and independent of cell proliferation. In addition, S1P induced secretion of the potentially neuroprotective chemokine CXCL1, which was increased when astrocytes were pre-challenged with LPS. A more prominent role of S1P3 signaling compared to S1P1 signaling was demonstrated by the use of selective S1P3 or S1P1 agonists.

Conclusion/Significance

In summary, our data demonstrate that the SphK1/S1P3 signaling axis is upregulated when astrocytes are activated by LPS. This signaling pathway appears to play a role in the establishment and maintenance of astrocyte activation. Upregulation of the pathway in MS may be detrimental, e.g. through enhancing astrogliosis, or beneficial through increased remyelination via CXCL1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号