首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although combination antiretroviral therapies seem to be effective at controlling HIV-1 infections regardless of the viral subtype, there is increasing evidence for subtype-specific drug resistance mutations. The order and rates at which resistance mutations accumulate in different subtypes also remain poorly understood. Most of this knowledge is derived from studies of subtype B genotypes, despite not being the most abundant subtype worldwide. Here, we present a methodology for the comparison of mutational networks in different HIV-1 subtypes, based on Hidden Conjunctive Bayesian Networks (H-CBN), a probabilistic model for inferring mutational networks from cross-sectional genotype data. We introduce a Monte Carlo sampling scheme for learning H-CBN models for a larger number of resistance mutations and develop a statistical test to assess differences in the inferred mutational networks between two groups. We apply this method to infer the temporal progression of mutations conferring resistance to the protease inhibitor lopinavir in a large cross-sectional cohort of HIV-1 subtype C genotypes from South Africa, as well as to a data set of subtype B genotypes obtained from the Stanford HIV Drug Resistance Database and the Swiss HIV Cohort Study. We find strong support for different initial mutational events in the protease, namely at residue 46 in subtype B and at residue 82 in subtype C. The inferred mutational networks for subtype B versus C are significantly different sharing only five constraints on the order of accumulating mutations with mutation at residue 54 as the parental event. The results also suggest that mutations can accumulate along various alternative paths within subtypes, as opposed to a unique total temporal ordering. Beyond HIV drug resistance, the statistical methodology is applicable more generally for the comparison of inferred mutational networks between any two groups.  相似文献   

2.
Human immunodeficiency virus type 1 (HIV-1) strains can be separated into genetic subtypes based on phylogenetic analysis of the envelope gene. Once it had been shown that population-wide intrasubtype genetic variation of HIV-1 strains increases in the course of the AIDS epidemic, it remained uncertain whether HIV-1 subtypes are phenotypic entities spreading as distinct virus populations. To examine this, we applied Eigen's concepts of sequence geometry and fitness topography to the analysis of intrasubtype evolution of the gp120 V3 domain of HIV-1 subtypes A, B, C, and D in the course of the global AIDS epidemic. We observed that despite the high evolution rate of HIV-1, the nonsynonymous distances to the subtype consensus of sequences obtained early in the epidemic are similar to those obtained more than 10 years later, in contrast to the synonymous distances, which increased steadily over time. For HIV-1 subtype B, we observed that the evolution rate of the individual sequences is independent of their distance from the subtype B consensus, but for the individual sequences most distant from the consensus evolution away from the consensus is constrained. As a result, individual HIV-1 genomes fluctuate within a sequence space with fixed distance to the subtype consensus. Our findings suggest that the evolution of the V3 domain of HIV-1 subtypes A, B, C, and D is confined to an area in sequence space within a fixed distance to the consensus of a respective subtype. This in turn indicates that each HIV-1 subtype is a distinct viral quasispecies that is well adapted to the present environment, able to maintain its identity in the V3 region over time, and unlikely to merge during progression of the AIDS epidemic.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) is classified in nine subtypes (A to D, F, G, H, J, and K), a number of subsubtypes, and several circulating recombinant forms (CRFs). Due to the high level of genetic diversity within HIV-1 and to its worldwide distribution, this classification system is widely used in fields as diverse as vaccine development, evolution, epidemiology, viral fitness, and drug resistance. Here, we demonstrate how the high recombination rates of HIV-1 may confound the study of its evolutionary history and classification. Our data show that subtype G, currently classified as a pure subtype, has in fact a recombinant history, having evolved following recombination between subtypes A and J and a putative subtype G parent. In addition, we find no evidence for recombination within one of the lineages currently classified as a CRF, CRF02_AG. Our analysis indicates that CRF02_AG was the parent of the recombinant subtype G, rather than the two having the opposite evolutionary relationship, as is currently proposed. Our results imply that the current classification of HIV-1 subtypes and CRFs is an artifact of sampling history, rather than reflecting the evolutionary history of the virus. We suggest a reanalysis of all pure subtypes and CRFs in order to better understand how high rates of recombination have influenced HIV-1 evolutionary history.  相似文献   

4.
Although the sequence variable loops of the human immunodeficiency virus' (HIV-1) surface envelope glycoprotein (gp120) can exhibit good immunogenicity, characterizing conserved (invariant) cross-strain neutralization epitopes within these loops has proven difficult. We recently developed a method to derive sensitive and specific signature motifs for the three-dimensional (3D) shapes of the HIV-1 neutralization epitopes in the third variable (V3) loop of gp120 that are recognized by human monoclonal antibodies (mAbs). We used the signature motif method to estimate the conservation of these epitopes across circulating worldwide HIV-1 strains. The epitope targeted by the anti-V3 loop neutralizing mAb 3074 is present in 87% of circulating strains, distributed nearly evenly among all subtypes. The results for other anti-V3 Abs are: 3791, present in 63% of primarily non-B subtypes; 2219, present in 56% of strains across all subtypes; 2557, present in 52% across all subtypes; 447-52D, present in 11% of primarily subtype B strains; 537-10D, present in 9% of primarily subtype B strains; and 268-D, present in 5% of primarily subtype B strains. The estimates correlate with in vitro tests of these mAbs against diverse viral panels. The mAb 3074 thus targets an epitope that is nearly completely conserved among circulating HIV-1 strains, demonstrating the presence of an invariant structure hidden in the dynamic and sequence-variable V3 loop in gp120. Since some variable loop regions are naturally immunogenic, designing immunogens to mimic their conserved epitopes may be a promising vaccine discovery approach. Our results suggest one way to quantify and compare the magnitude of the conservation.  相似文献   

5.
广西壮族自治区HIV-1流行毒株的基因序列测定和亚型分析   总被引:12,自引:0,他引:12  
使用PCR技术对14份广西HIV-1阳性感染者外周血单核细胞(PBMCs)样品进行扩增,获得HIV-1膜蛋白(env)基因的核酸片段,并对其C2-V3及邻区350-450个核苷酸序列进行了测定和分析。结果表明,14份样品中9份为泰国B(B′)亚型,5份为E亚型毒株。其中B′亚型毒株的基因离散率为4.2%,与A-E参考亚型及部分B亚型代表株序列相比较,与包括泰国、缅甸及云南德宏在内的B亚型毒株序列十分接近,相互之间基因离散率在3.0%-4.4%的范围内;而E亚型毒株的基因离散率为2.1%,与国际E亚型毒株的基因离散率最近,为5.6%,与其它国际参考亚型基因离散率很远,在21.1%-27.3%。根据以上数据及其它资料提示,广西存在B′和E两种亚型的HIV-1的流行,且其B′亚型毒株的传入,与流行在云南德宏州的相同亚型HIV-1毒株密切相关,而E亚型毒株则可能是由泰国经越南传入广西的  相似文献   

6.
We have tracked the early years of the evolution of the human immunodeficiency virus type 1 (HIV-1) epidemic in a rural district of central east Africa from the first documented introductions of subtypes A, D, and C to the present predominance of subtype C. The earliest subtype C sequences ever reported are described. Blood samples were collected on filter papers from 1981 to 1984 and from 1987 to 1989 from more than 44,000 individuals living in two areas of Karonga District, Malawi. These samples included HIV-1-positive samples from 200 people. In 1982 to 1984, HIV-1 subtypes A, C, and D were all present, though in small numbers. By 1987 to 1989, 152 (90%) of a total of 168 sequences were subtype C and AC, AD, and DC recombinants had emerged. Four of the subtype C sequences from 1983 to 1984 were closely related and were found at the base of a large cluster of low diversity that by the late 1980s accounted for 40% of C sequences. The other two early C sequences fell into a separate and more diverse cluster. Three other clusters containing sequences from the late 1980s were identified. Each cluster contained at least one sample from a person who had recently arrived in the district. From 18 HIV-1-positive spouse pairs, 12 very closely related pairs of sequences were identified. We conclude that there were multiple introductions of HIV-1 with limited spread, followed by explosive growth of a subtype C cluster, probably arising from a single introduction in or before 1983.  相似文献   

7.
To better understand the nature of B cell dysfunctions in subjects infected with HIV-1 subtype A, a rural cohort of 50 treatment-naïve Ugandan patients chronically infected with HIV-1 subtype A was studied, and the relationship between B cell depletion and HIV disease was assessed. B cell absolute counts were found to be significantly lower in HIV-1+ patients, when compared to community matched negative controls (p<0.0001). HIV-1-infected patients displayed variable functional and binding antibody titers that showed no correlation with viral load or CD4+ T cell count. However, B cell absolute counts were found to correlate inversely with neutralizing antibody (NAb) titers against subtype A (p = 0.05) and subtype CRF02_AG (p = 0.02) viruses. A positive correlation was observed between subtype A gp120 binding antibody titers and NAb breadth (p = 0.02) and mean titer against the 10 viruses (p = 0.0002). In addition, HIV-1 subtype A sera showed preferential neutralization of the 5 subtype A or CRF02_AG pseudoviruses, as compared with 5 pseudoviruses from subtypes B, C or D (p<0.001). These data demonstrate that in patients with chronic HIV-1 subtype A infection, significant B cell depletion can be observed, the degree of which does not appear to be associated with a decrease in functional antibodies. These findings also highlight the potential importance of subtype in the specificity of cross-clade neutralization in HIV-1 infection.  相似文献   

8.
Pathogens like HIV-1, which evolve into many closely related variants displaying differential infectivity and evolutionary dynamics in a short time scale, require fast and accurate classification. Conventional whole genome sequence alignment-based methods are computationally expensive and involve complex analysis. Alignment-free methodologies are increasingly being used to effectively differentiate genomic variations between viral species. Multifractal analysis, which explores the self-similar nature of genomes, is an alignment-free methodology that has been applied to study such variations. However, whether multifractal analysis can quantify variations between closely related genomes, such as the HIV-1 subtypes, is an open question. Here we address the above by implementing the multifractal analysis on four retroviral genomes (HIV-1, HIV-2, SIVcpz, and HTLV-1), and demonstrate that individual multifractal properties can differentiate between different retrovirus types easily. However, the individual multifractal measures do not resolve within-group variations for different known subtypes of HIV-1 M group. We show here that these known subtypes can instead be classified correctly using a combination of the crucial multifractal measures. This method is simple and computationally fast in comparison to the conventional alignment-based methods for whole genome phylogenetic analysis.  相似文献   

9.
Africa accounts for the majority of HIV-1 infections worldwide caused mainly by the A and C viral subtypes rather than B subtype, which prevails in the United States and Western Europe. In Brazil, B subtype is the major subtype, but F, C, and A also circulate. These non-B subtypes present polymorphisms, and some of them occur at sites that have been associated with drug resistance, including the HIV-1 protease (PR), one important drug target. Here, we report a Molecular Dynamics study of the B and non-B PR complexed with the inhibitor ritonavir to delineate the behavior of each subtype. We compare root mean squared deviation, binding free energy by linear interaction energy approach, hydrogen bonds, and intermolecular contact surface area between inhibitor and PR. From our results, we can provide a basis to understand the molecular mechanism of drug resistance in non-B subtypes. In this sense, we found a decrease of approx 4 kcal/mol in ΔG of binding between B and non-B subtypes. This corresponds to the loss of one hydrogen bond, which is in agreement with our H-bond analysis. Previous experimental affinity studies reported analogous results with inhibition constant values for non-B PR.  相似文献   

10.
Rate heterogeneity among lineages is a common feature of molecular evolution, and it has long impeded our ability to accurately estimate the age of evolutionary divergence events. The development of relaxed molecular clocks, which model variable substitution rates among lineages, was intended to rectify this problem. Major subtypes of pandemic HIV-1 group M are thought to exemplify closely related lineages with different substitution rates. Here, we report that inferring the time of most recent common ancestor of all these subtypes in a single phylogeny under a single (relaxed) molecular clock produces significantly different dates for many of the subtypes than does analysis of each subtype on its own. We explore various methods to ameliorate this problem. We conclude that current molecular dating methods are inadequate for dealing with this type of substitution rate variation in HIV-1. Through simulation, we show that heterotachy causes root ages to be overestimated.  相似文献   

11.
HIV-1 subtype phylogeny is investigated using a previously developed computational model of natural amino acid site substitutions. This model, based on Boltzmann statistics and Metropolis kinetics, involves an order of magnitude fewer adjustable parameters than traditional substitution matrices and deals more effectively with the issue of protein site heterogeneity. When optimized for sequences of HIV-1 envelope (env) proteins from a few specific subtypes, our model is more likely to describe the evolutionary record for other subtypes than are methods using a single substitution matrix, even a matrix optimized over the same data. Pairwise distances are calculated between various probabilistic ancestral subtype sequences, and a distance matrix approach is used to find the optimal phylogenetic tree. Our results indicate that the relationships between subtypes B, C, and D and those between subtypes A and H may be closer than previously thought.  相似文献   

12.
13.
14.
The subtyping of 350 isolates of HIV-1, isolated on the territories of 38 subjects of the Russian Federation, was carried out. The analysis was made by the method of the comparative heteroduplex mobility assay, as well as by the determination of the sequence of genes env [correction of ens] (gp 120) and gag (p17-p24). The study revealed that more than 50% of all cases of HIV-1 infection were caused by closely related variants of subtype A virus. The number of cases of HIV-1 infection caused by recombinant virus A/B was not less than 25%. The total number of cases caused by viruses of subtypes C, D, E, F and H was not more than 5%.  相似文献   

15.
16.
17.
The human immunodeficiency virus type 1 (HIV-1) epidemic in Southeast Asia has been largely due to the emergence of clade E (HIV-1E). It has been suggested that HIV-1E is derived from a recombinant lineage of subtype A (HIV-1A) and subtype E, with multiple breakpoints along the E genome. We obtained complete genome sequences of clade E viruses from Thailand (93TH057 and 93TH065) and from the Central African Republic (90CF11697 and 90CF4071), increasing the total number of HIV-1E complete genome sequences available to seven. Phylogenetic analysis of complete genomes showed that subtypes A and E are themselves monophyletic, although together they also form a larger monophyletic group. The apparent phylogenetic incongruence at different regions of the genome that was previously taken as evidence of recombination is shown to be not statistically significant. Furthermore, simulations indicate that bootscanning and pairwise distance results, previously used as evidence for recombination, can be misleading, particularly when there are differences in substitution or evolutionary rates across the genomes of different subtypes. Taken jointly, our analyses suggest that there is inadequate support for the hypothesis that subtype E variants are derived from a recombinant lineage. In contrast, many other HIV strains claimed to have a recombinant origin, including viruses for which only a single parental strain was employed for analysis, do indeed satisfy the statistical criteria we propose. Thus, while intersubtype recombinant HIV strains are indeed circulating, the criteria for assigning a recombinant origin to viral structures should include statistical testing of alternative hypotheses to avoid inappropriate assignments that would obscure the true evolutionary properties of these viruses.  相似文献   

18.
Pybus OG  Rambaut A  Harvey PH 《Genetics》2000,155(3):1429-1437
We describe a unified set of methods for the inference of demographic history using genealogies reconstructed from gene sequence data. We introduce the skyline plot, a graphical, nonparametric estimate of demographic history. We discuss both maximum-likelihood parameter estimation and demographic hypothesis testing. Simulations are carried out to investigate the statistical properties of maximum-likelihood estimates of demographic parameters. The simulations reveal that (i) the performance of exponential growth model estimates is determined by a simple function of the true parameter values and (ii) under some conditions, estimates from reconstructed trees perform as well as estimates from perfect trees. We apply our methods to HIV-1 sequence data and find strong evidence that subtypes A and B have different demographic histories. We also provide the first (albeit tentative) genetic evidence for a recent decrease in the growth rate of subtype B.  相似文献   

19.
Lamers SL  Poon AF  McGrath MS 《PloS one》2011,6(2):e16659
The difference between regional rates of HIV-associated dementia (HAD) in patients infected with different subtypes of HIV suggests that genetic determinants exist within HIV that influence the ability of the virus to replicate in the central nervous system (in Uganda, Africa, subtype D HAD rate is 89%, while subtype A HAD rate is 24%). HIV-1 nef is a multifunctional protein with known toxic effects in the brain compartment. The goal of the current study was to identify if specific three-dimensional nef structures may be linked to patients who developed HAD. HIV-1 nef structures were computationally derived for consensus brain and non-brain sequences from a panel of patients infected with subtype B who died due to varied disease pathologies and consensus subtype A and subtype D sequences from Uganda. Site directed mutation analysis identified signatures in brain structures that appear to change binding potentials and could affect folding conformations of brain-associated structures. Despite the large sequence variation between HIV subtypes, structural alignments confirmed that viral structures derived from patients with HAD were more similar to subtype D structures than to structures derived from patient sequences without HAD. Furthermore, structures derived from brain sequences of patients with HAD were more similar to subtype D structures than they were to their own non-brain structures. The potential finding of a brain-specific nef structure indicates that HAD may result from genetic alterations that alter the folding or binding potential of the protein.  相似文献   

20.

Background

HIV-1 subtype B is the most prevalent in developed countries and, consequently, it has been extensively studied. On the other hand, subtype C is the most prevalent worldwide and therefore is a reasonable target for future studies. Here we evaluate the acquisition of resistance and the viability of HIV-1 subtype B and C RT clones from different isolates that were subjected to in vitro selection pressure with zidovudine (ZDV) and lamivudine (3TC).

Methods/Principal Findings

MT4 cells were infected with chimeric virus pseudotyped with RT from subtype B and C clones, which were previously subjected to serial passage with increasing concentrations of ZDV and 3TC. The samples collected after each passage were analyzed for the presence of resistance mutations and VL. No differences were found between subtypes B and C in viral load and resistance mutations when these viruses were selected with 3TC. However, the route of mutations and the time to rebound of subtype B and C virus were different when subjected to ZDV treatment. In order to confirm the role of the mutations detected, other clones were generated and subjected to in vitro selection. RT subtype B virus isolates tended to acquire different ZDV resistance mutations (Q151M and D67N or T215Y, D67D/N and F214L) compared to subtype C (D67N, K70R, T215I or T215F).

Conclusions/Significance

This study suggests that different subtypes have a tendency to react differently to antiretroviral drug selection in vitro. Consequently, the acquisition of resistance in patients undergoing antiretroviral therapy can be dependent on the subtypes composing the viral population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号