首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unique metal-dependent protein tyrosine phosphatases that belong to the polymerase and histindinol phosphatase (PHP) family are present in Gram-positive bacteria. They are distinct from the Cys-based, low-molecular-weight phosphotyrosine protein phosphatases (LMPTPs). Two representative members of the PHP family tyrosine phosphatases are YwqE from Bacillus subtilis and CpsB from Streptococcus pneumoniae. YwqE is involved in polysaccharide biosynthesis, bacterial DNA metabolism, and DNA damage response in B. subtilis. CpsB regulates capsular polysaccharide biosynthesis via tyrosine dephosphorylation of CpsD, its cognate tyrosine kinase, in S. pneumoniae. To gain insights into the active site and possible conformational changes of the metal-dependent tyrosine phosphatases from Gram-positive bacteria, we have determined the crystal structures of B. subtilis YwqE (in both the apo form and the phosphate-bound form) and S. pneumoniae CpsB (in the sulfate-bound form). Comparisons of the three structures reveal conformational plasticity of two active site loops. Furthermore, in both structures of the phosphate-bound YwqE and the sulfate-bound CpsB, the phosphate (or sulfate) ion is bound to a cluster of three metal ions in the active site, thus providing insight into the pre-catalytic state.  相似文献   

2.
Both gram-negative and gram-positive bacteria possess protein tyrosine phosphatases (PTPs) with a catalytic Cys residue. In addition, many gram-positive bacteria have acquired a new family of PTPs, whose first characterized member was CpsB from Streptococcus pneumoniae. Bacillus subtilis contains one such CpsB-like PTP, YwqE, in addition to two class II Cys-based PTPs, YwlE and YfkJ. The substrates for both YwlE and YfkJ are presently unknown, while YwqE was shown to dephosphorylate two phosphotyrosine-containing proteins implicated in UDP-glucuronate biosynthesis, YwqD and YwqF. In this study, we characterize YwqE, compare the activities of the three B. subtilis PTPs (YwqE, YwlE, and YfkJ), and demonstrate that the two B. subtilis class II PTPs do not dephosphorylate the physiological substrates of YwqE.  相似文献   

3.
CpsA, CpsB, CpsC, and CpsD are part of a tyrosine phosphorylation regulatory system involved in modulation of capsule synthesis in Streptococcus pneumoniae and many other gram-positive and gram-negative bacteria. Using an immunoblotting technique, we observed distinct laddering patterns of S. pneumoniae capsular polysaccharides of various serotypes and found that transfer of the polymer from the membrane to the cell wall was independent of size. Deletion of cps2A, cps2B, cps2C, or cps2D in the serotype 2 strain D39 did not affect the ability to transfer capsule to the cell wall. Deletion of cps2C or cps2D, which encode two domains of an autophosphorylating tyrosine kinase, resulted in the production of only short-chain polymers. The function of Cps2A is unknown, and the polymer laddering pattern of the cps2A deletion mutants appeared similar to that of the parent, although the total amount of capsule was decreased. Loss of Cps2B, a tyrosine phosphatase and a kinase inhibitor, resulted in an increase in capsule amount and a normal ladder pattern. However, Cps2B mutants exhibited reduced virulence following intravenous inoculation of mice and were unable to colonize the nasopharynx, suggesting a diminished capacity to sense or respond to these environments. In D39 and its isogenic mutants, the amounts of capsule and tyrosine-phosphorylated Cps2D (Cps2D approximately P) correlated directly. In contrast, restoration of type 2 capsule production followed by deletion of cps2B in Rx1, a laboratory passaged D39 derivative containing multiple uncharacterized mutations, resulted in decreased capsule amounts but no alteration in Cps2D approximately P levels. Thus, a factor outside the capsule locus, which is either missing or defective in the Rx1 background, is important in the control of capsule synthesis.  相似文献   

4.
Many Gram-positive and Gram-negative bacteria utilize polysaccharide surface layers called capsules to evade the immune system; consequently, the synthesis and export of the capsule are a potential therapeutic target. In Escherichia coli K-30, the integral membrane tyrosine autokinase Wzc and the cognate phosphatase Wzb have been shown to be key for both synthesis and assembly of capsular polysaccharides. In the Gram-positive bacterium Streptococcus pneumoniae, the CpsCD complex is analogous to Wzc and the phosphatase CpsB is the corresponding cognate phosphatase. The phosphatases are known to dephosphorylate their corresponding autokinases, yet despite their functional equivalence, they share no sequence homology. We present the structure of Wzb in complex with phosphate and high-resolution structures of apo-CpsB and a phosphate-complexed CpsB. We show that both proteins are active toward Wzc and thereby demonstrate that CpsB is not specific for CpsCD. CpsB is a novel enzyme and represents the first solved structure of a tyrosine phosphatase from a Gram-positive bacterium. Wzb and CpsB have completely different structures, suggesting that they must operate by very different mechanisms. Although the mechanism of Wzb can be inferred from previous studies, CpsB appears to have a tyrosine phosphatase mechanism not observed before. We propose a chemical mechanism for CpsB based on site-directed mutagenesis and structural data.  相似文献   

5.
Tyrosine phosphorylation is associated with polysaccharide synthesis in a number of Gram-positive and Gram-negative bacteria. In Streptococcus pneumoniae, CpsB, CpsC, and CpsD affect tyrosine phosphorylation and are critical for the production of a mature capsule in vitro. To characterize the interactions between these proteins and the phosphorylation event they modulate, cps2B, cps2C, and cps2D from the capsule type 2 S. pneumoniae D39 were cloned and expressed both individually and in combination in Escherichia coli. Cps2D purified from E. coli was not phosphorylated unless it was co-expressed with its cognate transmembrane domain, Cps2C. Purified phosphorylated Cps2D had tyrosine kinase activity and could phosphorylate both dephosphorylated Cps2D and an exogenous substrate (poly-Glu-Tyr) in the absence of ATP. Cps2B exhibited phosphatase activity against both purified phosphorylated Cps2D and p-nitrophenyl phosphate. An additional role for Cps2B as an inhibitor of Cps2D phosphorylation was demonstrated in both co-expression experiments in E. coli and in vitro experiments where it blocked the transphosphorylation of Cps2D even in the presence of the phosphatase inhibitor sodium orthovanadate. cps2C and cps2D deletion mutants in S. pneumoniae produced no detectable mature capsule during laboratory culture. Both were avirulent in systemic mouse infections and were unable to colonize the nasopharynx, suggesting that the failure to produce capsule was not dependent on the environment. Based on these results, we propose a model for capsule regulation where CpsB, CpsC, CpsD, and ATP form a stable complex that enhances capsule synthesis.  相似文献   

6.
The majority of the 90 capsule types made by the gram-positive pathogen Streptococcus pneumoniae are assembled by a block-type mechanism similar to that utilized by the Wzy-dependent O antigens and capsules of gram-negative bacteria. In this mechanism, initiation of repeat unit formation occurs by the transfer of a sugar to a lipid acceptor. In S. pneumoniae, this step is catalyzed by CpsE, a protein conserved among the majority of capsule types. Membranes from S. pneumoniae type 2 strain D39 and Escherichia coli containing recombinant Cps2E catalyzed incorporation of [14C]Glc from UDP-[14C]Glc into a lipid fraction in a Cps2E-dependent manner. The Cps2E-dependent glycolipid product from both membranes was sensitive to mild acid hydrolysis, suggesting that Cps2E was catalyzing the formation of a polyprenyl pyrophosphate Glc. Addition of exogenous polyprenyl phosphates ranging in size from 35 to 105 carbons to D39 and E. coli membranes stimulated Cps2E activity. The stimulation was due, in part, to utilization of the exogenous polyprenyl phosphates as an acceptor. The glycolipid product synthesized in the absence of exogenous polyprenyl phosphates comigrated with a 60-carbon polyprenyl pyrophosphate Glc. When 10 or 100 microM UMP was added to reaction mixtures containing D39 membranes, Cps2E activity was inhibited 40% and 80%, respectively. UMP, which acted as a competitive inhibitor of UDP-Glc, also stimulated Cps2E to catalyze the reverse reaction, with synthesis of UDP-Glc from the polyprenyl pyrophosphate Glc. These data indicated that Cps2E was catalyzing the addition of Glc-1-P to a polyprenyl phosphate acceptor, likely undecaprenyl phosphate.  相似文献   

7.
The first four genes of the capsule locus (cps) of Streptococcus pneumoniae (cpsA to cpsD) are common to most serotypes. We have previously determined that CpsD is an autophosphorylating protein-tyrosine kinase, demonstrated that CpsC is required for CpsD tyrosine-phosphorylation, and shown that CpsB is required for dephosphorylation of CpsD. In the present study we show that CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase that belongs to the PHP (polymerase and histidinol phosphatase) family of phosphoesterases. We also show that an S. pneumoniae strain with point mutations in cpsB, affecting one of the conserved motifs of CpsB, is unencapsulated and appears to be morphologically identical to a strain in which the cpsB gene had been deleted.  相似文献   

8.
Extracellular polysaccharides of many bacteria are synthesized by the Wzy polymerase-dependent mechanism, where long-chain polymers are assembled from undecaprenyl-phosphate-linked repeat units on the outer face of the cytoplasmic membrane. In gram-positive bacteria, Wzy-dependent capsules remain largely cell associated via membrane and peptidoglycan linkages. Like many Wzy-dependent capsules, the Streptococcus pneumoniae serotype 2 capsule is branched. In this study, we found that deletions of cps2K, cps2J, or cps2H, which encode a UDP-glucose dehydrogenase necessary for side chain synthesis, the putative Wzx transporter (flippase), and the putative Wzy polymerase, respectively, were obtained only in the presence of suppressor mutations. Most of the suppressor mutations were in cps2E, which encodes the initiating glycosyltransferase for capsule synthesis. The cps2K mutants containing the suppressor mutations produced low levels of high-molecular-weight polymer that was detected only in membrane fractions. cps2K-repaired mutants exhibited only modest increases in capsule production due to the effect of the secondary mutation, but capsule was detectable in both membrane and cell wall fractions. Lethality of the cps2K, cps2J, and cps2H mutations was likely due to sequestration of undecaprenyl-phosphate in the capsule pathway and either preclusion of its turnover for utilization in essential pathways or destabilization of the membrane due to an accumulation of lipid-linked intermediates. The results demonstrate that proper polymer assembly requires not only a functional transporter and polymerase but also complete repeat units. A central role for the initiating glycosyltransferase in controlling capsule synthesis is also suggested.  相似文献   

9.
Using the yeast two-hybrid system, intraspecific protein interactions were detected in Streptococcus iniae and Lactococcus lactis subsp. cremoris between the transmembrane activation protein (CpsC and EpsA, respectively) and the protein tyrosine kinase (CpsD and EpsB, respectively), between two protein tyrosine kinases, and between the protein tyrosine kinase and the phosphotyrosine phosphatase (CpsB and EpsC, respectively). For each of these intraspecific interactions, interspecific interactions were also detected when one protein was from S.?iniae and the other was from Streptococcus thermophilus . Interactions were also observed between two protein tyrosine kinases when one protein was from either of the Streptococcus species and the other from L. lactis subsp. cremoris. The results and sequence comparisons performed in this study support the conclusion that interactions among the components of the tyrosine kinase?- phosphatase regulatory system are conserved in the order Lactobacillales and that interspecific genetic exchanges of the genes that encode these proteins have the potential to form functional recombinants. A better understanding of intraspecific and interspecific protein interactions involved in regulating exopolysaccharide biosynthesis may facilitate construction of improved strains for industrial uses as well as identification of factors needed to form functional regulatory complexes in naturally occurring recombinants.  相似文献   

10.
In Streptococcus pneumoniae, the first four genes of the capsule locus (cpsA to cpsD) are common to most serotypes. By analysis of various in-frame deletion and site-directed mutants, the function of their gene products in capsular polysaccharide (CPS) biosynthesis was investigated. We found that while CpsB, C and D are essential for encapsulation, CpsA is not. CpsC and CpsD have similarity to the amino-terminal and carboxy-terminal regions, respectively, of the autophosphorylating protein-tyrosine kinase Wzc from Escherichia coli. Alignment of CpsD with Wzc and other related proteins identified conserved Walker A and B sequence motifs and a tyrosine rich domain close to the carboxy-terminus. We have shown that CpsD is also an autophosphorylating protein-tyrosine kinase and that point mutations in cpsD affecting either the ATP-binding domain (Walker A motif) or the carboxy-terminal [YGX]4 repeat domain eliminated tyrosine phosphorylation of CpsD. We describe, for the first time, the phenotypic impact of these two mutations on polysaccharide production and show that they affect CPS production differently. Whereas a mutation in the Walker A motif resulted in loss of encapsulation, mutation of the tyrosines in the [YGX]4 repeat domain resulted in an apparent increase in encapsulation and a mucoid phenotype. These data suggest that autophosphorylation of CpsD at tyrosine attenuates its activity and reduces the level of encapsulation. Additionally, we demonstrated that CpsC is required for CpsD tyrosine phosphorylation and that CpsB influences dephosphorylation of CpsD. These results are consistent with CpsD tyrosine phosphorylation acting to negatively regulate CPS production. This has implications for the function of CpsC/CpsD homologues in both Gram-positive and Gram-negative bacteria and provides a mechanism to explain regulation of CPS production during pathogenesis.  相似文献   

11.
In Gram-positive bacteria, tyrosine kinases are split into two proteins, the cytoplasmic tyrosine kinase and a transmembrane adaptor protein. In Streptococcus pneumoniae, this transmembrane adaptor is CpsC, with the C terminus of CpsC critical for interaction and subsequent tyrosine kinase activity of CpsD. Topology predictions suggest that CpsC has two transmembrane domains, with the N and C termini present in the cytoplasm. In order to investigate CpsC topology, we used a chromosomal hemagglutinin (HA)-tagged Cps2C protein in S. pneumoniae strain D39. Incubation of both protoplasts and membranes with carboxypeptidase B (CP-B) resulted in complete degradation of HA-Cps2C in all cases, indicating that the C terminus of Cps2C was likely extracytoplasmic and hence that the protein''s topology was not as predicted. Similar results were seen with membranes from S. pneumoniae strain TIGR4, indicating that Cps4C also showed similar topology. A chromosomally encoded fusion of HA-Cps2C and Cps2D was not degraded by CP-B, suggesting that the fusion fixed the C terminus within the cytoplasm. However, capsule synthesis was unaltered by this fusion. Detection of the CpsC C terminus by flow cytometry indicated that it was extracytoplasmic in approximately 30% of cells. Interestingly, a mutant in the protein tyrosine phosphatase CpsB had a significantly greater proportion of positive cells, although this effect was independent of its phosphatase activity. Our data indicate that CpsC possesses a varied topology, with the C terminus flipping across the cytoplasmic membrane, where it interacts with CpsD in order to regulate tyrosine kinase activity.  相似文献   

12.
13.
14.
Group A Streptococcus (GAS) is a human pathogen that causes high morbidity and mortality. GAS lacks a gene encoding tyrosine kinase but contains one encoding tyrosine phosphatase (SP‐PTP). Thus, GAS is thought to lack tyrosine phosphorylation, and the physiological significance of SP‐PTP is, therefore, questionable. Here, we demonstrate that SP‐PTP possesses dual phosphatase specificity for Tyr‐ and Ser/Thr‐phosphorylated GAS proteins, such as Ser/Thr kinase (SP‐STK) and the SP‐STK‐phosphorylated CovR and WalR proteins. Phenotypic analysis of GAS mutants lacking SP‐PTP revealed that the phosphatase activity per se positively regulates growth, cell division and the ability to adhere to and invade host cells. Furthermore, A549 human lung cells infected with GAS mutants lacking SP‐PTP displayed increased Ser‐/Thr‐/Tyr‐phosphorylation. SP‐PTP also differentially regulates the expression of ~50% of the total GAS genes, including several virulence genes potentially through the two‐component regulators, CovR, WalR and PTS/HPr regulation of Mga. Although these mutants exhibit attenuated virulence, a GAS mutant overexpressing SP‐PTP is hypervirulent. Our study provides the first definitive evidence for the presence and importance of Tyr‐phosphorylation in GAS and the relevance of SP‐PTP as an important therapeutic target.  相似文献   

15.
Protein phosphorylation plays critical roles in the regulation of protein activity and cell signaling. The level of protein phosphorylation is controlled by protein kinases and protein tyrosine phosphatases (PTPs). Disturbance of the equilibrium between protein kinase and PTP activities results in abnormal protein phosphorylation, which has been linked to the etiology of several diseases, including cancer. In this study, we screened protein tyrosine phosphatases (PTPs) by in vitro phosphatase assays to identify PTPs that are inhibited by bis (4-trifluoromethyl-sulfonamidophenyl, TFMS)-1,4-diisopropylbenzene (PTP inhibitor IV). PTP inhibitor IV inhibited DUSP14 phosphatase activity. Kinetic studies with PTP inhibitor IV and DUSP14 revealed a competitive inhibition, suggesting that PTP inhibitor IV binds to the catalytic site of DUSP14. PTP inhibitor IV effectively and specifically inhibited DUSP14-mediated dephosphorylation of JNK, a member of the mitogen-activated protein kinase (MAPK) family.  相似文献   

16.
Streptococcus pneumoniae is a member of the Mitis group of streptococci which, according to 16S rRNA-sequence based phylogenetic reconstruction, includes 12 species. While other species of this group are considered prototypes of commensal bacteria, S. pneumoniae is among the most frequent microbial killers worldwide. Population genetic analysis of 118 strains, supported by demonstration of a distinct cell wall carbohydrate structure and competence pheromone sequence signature, shows that S. pneumoniae is one of several hundred evolutionary lineages forming a cluster separate from Streptococcus oralis and Streptococcus infantis. The remaining lineages of this distinct cluster are commensals previously collectively referred to as Streptococcus mitis and each represent separate species by traditional taxonomic standard. Virulence genes including the operon for capsule polysaccharide synthesis and genes encoding IgA1 protease, pneumolysin, and autolysin were randomly distributed among S. mitis lineages. Estimates of the evolutionary age of the lineages, the identical location of remnants of virulence genes in the genomes of commensal strains, the pattern of genome reductions, and the proportion of unique genes and their origin support the model that the entire cluster of S. pneumoniae, S. pseudopneumoniae, and S. mitis lineages evolved from pneumococcus-like bacteria presumably pathogenic to the common immediate ancestor of hominoids. During their adaptation to a commensal life style, most of the lineages gradually lost the majority of genes determining virulence and became genetically distinct due to sexual isolation in their respective hosts.  相似文献   

17.
In Streptococcus pneumoniae, CpsB, CpsC, and CpsD are essential for encapsulation, and mutants containing deletions of cpsB, cpsC, or cpsD exhibit rough colony morphologies. CpsD is an autophosphorylating protein-tyrosine kinase, CpsC is required for CpsD tyrosine phosphorylation, and CpsB is a phosphotyrosine-protein phosphatase. We have previously shown that autophosphorylation of CpsD at tyrosine attenuates its activity and consequently reduces the level of encapsulation and negatively regulates CPS production. In this study, we further investigated the role of the carboxy-terminal (YGX)(4) repeat domain of CpsD in encapsulation. A CpsD truncation mutant in which the entire (YGX)(4) repeat domain was removed was indistinguishable from a strain in which the entire cpsD gene had been deleted, indicating that the carboxy-terminal (YGX)(4) tail is required for CpsD activity in capsular polysaccharide production. Double mutants having a single tyrosine residue at position 2, 3, or 4 in the (YGX)(4) repeat domain and lacking CpsB exhibited a rough colony morphology, indicating that in the absence of an active protein-tyrosine phosphatase, phosphorylation of just one of the tyrosine residues in the (YGX)(4) repeat was sufficient to inactivate CpsD. When various mutants in which CpsD had either one or combinations of two or three tyrosine residues in the (YGX)(4) repeat domain were examined, only those with three tyrosine residues in the (YGX)(4) repeat domain were indistinguishable from the wild-type strain. The mutants with either one or two tyrosine residues exhibited mucoid colony morphologies. Further analysis of the mucoid strains indicated that the mucoid phenotype was not due to overproduction of capsular polysaccharide, as these strains actually produced less capsular polysaccharide than the wild-type strain. Thus, the tyrosine residues in the (YGX)(4) repeat domain are essential for normal functioning of CpsD.  相似文献   

18.
Increasing antibiotic resistance is making the identification of novel antimicrobial targets critical. Recently, we discovered an inhibitor of protein tyrosine phosphatase CpsB, fascioquinol E (FQE), which unexpectedly inhibited the growth of Gram-positive pathogens. CpsB is a member of the polymerase and histidinol phosphate phosphatase (PHP) domain family. Another member of this family found in a variety of Gram-positive pathogens is DNA polymerase PolC. We purified the PHP domain from PolC (PolCPHP), and showed that this competes away FQE inhibition of CpsB phosphatase activity. Furthermore, we showed that this domain hydrolyses the 5′-p-nitrophenyl ester of thymidine-5′-monophosphate (pNP-TMP), which has been used as a measure of exonuclease activity. Finally, we showed that FQE not only inhibits the phosphatase activity of CpsB, but also ability of PolCPHP to catalyse the hydrolysis of pNP-TMP. This suggests that PolC may be the essential target of FQE, and that the PHP domain may represent an as yet untapped target for the development of novel antibiotics.  相似文献   

19.
The synthesis and biological activity of a series of 2-[(4-methylthiopyridin-2-yl)methylsulfinyl]benzimidazoles are described. These compounds have potent inhibitory effects against the protein tyrosine phosphatase activity of CD45. Enzymatic analysis with several phosphatases revealed that compound 5a had high specificity for CD45 compared with serine/threonine phosphatases (PP1, PP2A), tyrosine phosphatases (LAR, PTP1B and PTP-S2) and dual phosphatase (VHR).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号