共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of cytosolic and extracellular Ca2+ on Ca2+ signals in pancreatic acinar cells by measuring Ca2+ concentration in the cytosol([Ca2+]c) and in the lumen of the ER([Ca2+]Lu). To control buffers and dye in the cytosol, a patch-clamp microelectrode was employed. Acetylcholine released Ca2+ mainly from the basolateral ER-rich part of the cell. The rate of Ca2+ release from the ER was highly sensitive to the buffering of [Ca2+]c whereas ER Ca2+ refilling was enhanced by supplying free Ca2+ to the cytosol with [Ca2+]c clamped at resting levels with a patch pipette containing 10 mM BAPTA and 2 mM Ca2+. Elevation of extracellular Ca2+ to 10 mM from 1 mM raised resting [Ca2+]c slightly and often generated [Ca2+]c oscillations in single or clustered cells. Although pancreatic acinar cells are reported to have extracellular Ca2+-sensing receptors linked to phospholipase C that mobilize Ca2+ from the ER, exposure of cells to 10 mM Ca2+ did not decrease [Ca2+]Lu but rather raised it. From these findings we conclude that 1) ER Ca2+ release is strictly regulated by feedback inhibition of [Ca2+]c, 2) ER Ca2+ refilling is determined by the rate of Ca2+ influx and occurs mainly in the tiny subplasmalemmal spaces, 3) extracellular Ca2+-induced [Ca2+]c oscillations appear to be triggered not by activation of extracellular Ca2+-sensing receptors but by the ER sensitised by elevated [Ca2+]c and [Ca2+]Lu. 相似文献
2.
A V Tepikin S G Voronina D V Gallacher O H Petersen 《The Journal of biological chemistry》1992,267(20):14073-14076
Ca2+ extrusion was measured simultaneously with the free intracellular Ca2+ concentration ([Ca2+]i) from single pancreatic acinar cells placed in microdroplets of extracellular solution (Tepikin, A. V., Voronina, S. G., Gallacher, D. V., and Petersen, O. H. (1992) J. Biol. Chem. 267, 3569-3572). Submaximal stimulation with cholecystokinin usually evoked discrete cytosolic Ca2+ spikes and each of these spikes was associated with a discrete and virtually synchronous pulse of Ca2+ extrusion into the extracellular microdroplet solution. When ACh evoked repetitive discrete [Ca2+]i spikes, each spike was also accompanied by a discrete pulse of Ca2+ extrusion. The velocity of Ca2+ extrusion oscillated with a time course similar to that of [Ca2+]i. The extracellular solution in our experiments had a low total calcium concentration (15-35 microM) and only a limited number of [Ca2+]i spikes (2-8) could be evoked. The magnitudes of the [Ca2+]i spikes and the amounts of Ca2+ extruded during each spike gradually decreased in each experiment. During the first cholecystokinin-evoked cytosolic Ca2+ spike the Ca2+ extrusion corresponded to a loss of 15-70% (mean value 39% +/- 12) of the mobilizable cellular calcium pool. The substantial pulsatile Ca2+ extrusion occurring synchronously with the receptor-activated cytosolic Ca2+ spikes is therefore an important element in repetitively bringing back [Ca2+]i to the resting level. 相似文献
3.
4.
In the present study we have investigated cytosolic and mitochondrial Ca(2+) signals in isolated mouse pancreatic acinar cells double-loaded with the fluorescent probes fluo-3 and rhod-2. Stimulation of pancreatic acinar cells with 500 nm acetylcholine caused release of Ca(2+) from intracellular stores and produced cytosolic Ca(2+) signals in form of Ca(2+) waves propagating from the luminal to the basal cell pole. The increase in the cytosolic Ca(2+) concentration was followed by Ca(2+) uptake into mitochondria. Between onset of cytosolic and mitochondrial Ca(2+) signals there was a delay of 10.7 +/- 0.4 s. Ca(2+) uptake into mitochondria could be inhibited with Ruthenium Red and carbonyl cyanide m-chlorophenylhydrazone, whereas 2,5-di-tert-butylhydroquinone, which inhibits sarco(endo)plasmic reticulum Ca(2+) ATPases, did not prevent Ca(2+) accumulation in mitochondria. Carbonyl cyanide m-chlorophenylhydrazone-induced Ca(2+) release from mitochondria could only be observed after a preceding stimulation of the cell with a physiological agonist or by treatment with 2, 5-di-tert-butylhydroquinone, indicating that under resting conditions mitochondria do not contain releasable Ca(2+) ions. Analysis of the propagation rate of acetylcholine-induced Ca(2+) waves revealed that inhibition of mitochondrial Ca(2+) uptake did not accelerate spreading of cytosolic Ca(2+) signals. Our experiments indicate that in the early phase of secretagogue-induced Ca(2+) signals, mitochondria behave as passive Ca(2+)-buffering elements and do not actively suppress spreading of Ca(2+) signals in pancreatic acinar cells. 相似文献
5.
A V Tepikin S G Voronina D V Gallacher O H Petersen 《The Journal of biological chemistry》1992,267(6):3569-3572
The intracellular free Ca2+ concentration ([free Ca2+]i) was measured simultaneously with the Ca2+ extrusion from single isolated mouse pancreatic acinar cells placed in a microdroplet of extracellular solution using the fluorescent probes fura-2 and fluo-3. The extracellular solution had a low total calcium concentration (15-35 microM), and acetylcholine (ACh), applied by microionophoresis, therefore only evoked a transient elevation of [free Ca2+]i lasting about 2-5 min. The initial sharp rise in [free Ca2+]i from about 100 nM toward 0.5-1 microM was followed within seconds by an increase in the total calcium concentration in the microdroplet solution ([Ca]o). The rate of this rise of [Ca]o was dependent on the [free Ca2+]i elevation, and as [free Ca2+]i gradually decreased Ca2+ extrusion declined with the same time course. Ca2+ extrusion following ACh stimulation was not influenced by removal of all Na+ in the microdroplet solution indicating that the Ca2+ extrusion is not mediated by Na(+)-Ca2+ exchange but by the Ca2+ pump. The amount of Ca2+ extruded during the ACh-evoked transient rise in [free Ca2+]i corresponded to a decrease in the total intracellular Ca concentration of about 0.7 mM which is close to previously reported values (0.5-1 mM) for the total concentration of mobilizable calcium in these cells. Our results therefore demonstrate directly the ability of the Ca2+ pump to rapidly remove the large amount of Ca2+ released from the intracellular pools during receptor activation. 相似文献
6.
M H Nathanson P J Padfield A J O'Sullivan A D Burgstahler J D Jamieson 《The Journal of biological chemistry》1992,267(25):18118-18121
An increase in cytosolic Ca2+ often begins as a Ca2+ wave, and this wave is thought to result from sequential activation of Ca(2+)-sensitive Ca2+ stores across the cell. We tested that hypothesis in pancreatic acinar cells, and since Ca2+ waves may regulate acinar Cl- secretion, we examined whether such waves also are important for amylase secretion. Ca2+ wave speed and direction was determined in individual cells within rat pancreatic acini using confocal line scanning microscopy. Both acetylcholine (ACh) and cholecystokinin-8 induced rapid Ca2+ waves which usually travelled in an apical-to-basal direction. Both caffeine and ryanodine, at concentrations that inhibit Ca(2+)-induced Ca2+ release (CICR), markedly slowed the speed of these waves. Amylase secretion was increased over 3-fold in response to ACh stimulation, and this increase was preserved in the presence of ryanodine. These results indicate that 1) stimulation of either muscarinic or cholecystokinin-8 receptors induces apical-to-basal Ca2+ waves in pancreatic acinar cells, 2) the speed of such waves is dependent upon mobilization of caffeine- and ryanodine-sensitive Ca2+ stores, and 3) ACh-induced amylase secretion is not inhibited by ryanodine. These observations provide direct evidence that Ca(2+)-induced Ca2+ release is important for propagation of cytosolic Ca2+ waves in pancreatic acinar cells. 相似文献
7.
M P Granados G M Salido J A Pariente A Gonzáles 《Journal of physiology and pharmacology》2007,58(3):423-440
In the present study we have employed single cell imaging analysis to monitor the propagation of cholecystokinin-evoked Ca(2+) waves in mouse pancreatic acinar cells. Stimulation of cells with 1 nM CCK-8 led to an initial Ca(2+) release at the luminal cell pole and subsequent spreading of the Ca(2+) signal towards the basolateral membrane in the form of a Ca(2+) wave. Inhibition of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) activity by 1 microM thapsigargin, preincubation in the presence of 100 microM H(2)O(2) or inhibition of PKC with either 5 microM Ro31-8220 or 3 microM GF-109203-X all led to a faster propagation of CCK-8-induced Ca(2+) signals. The propagation of CCK-8-evoked Ca(2+) signals was slowed down by activation of PKC with 1 microM PMA, and preincubation of cells in the presence of H(2)O(2) counteracted the effect of PKC inhibition. The protonophore FCCP (100 nM) and the inhibitor of the mitochondrial Ca(2+)-uniporter Ru360 (10 microM) led to an increase in the propagation rate of CCK-8-evoked Ca(2+) waves. Finally, depolymerisation of actin cytoskeleton with cytochalasin D (10 microM) led to a faster propagation of CCK-8-evoked Ca(2+) signals. Stabilization of actin cytoskeleton with jasplakinolide (10 microM) did not induce significant changes on CCK-8-evoked Ca(2+) waves. Preincubation of cells in the presence of H(2)O(2) counteracted the effect of cytochalasin D on CCK-8-evoked Ca(2+) wave propagation. Our results suggest that spreading of cytosolic Ca(2+) waves evoked by CCK-8 can be modulated by low levels of oxidants acting on multiple Ca(2+)-handling mechanisms. 相似文献
8.
Seung-Ryoung Jung Bertil Hille Toan D. Nguyen Duk-Su Koh 《The Journal of general physiology》2010,135(5):527-543
Exocytosis is evoked by intracellular signals, including Ca2+ and protein kinases. We determined how such signals interact to promote exocytosis in exocrine pancreatic duct epithelial cells (PDECs). Exocytosis, detected using carbon-fiber microamperometry, was stimulated by [Ca2+]i increases induced either through Ca2+ influx using ionomycin or by activation of P2Y2 or protease-activated receptor 2 receptors. In each case, the exocytosis was strongly potentiated when cyclic AMP (cAMP) was elevated either by activating adenylyl cyclase with forskolin or by activating the endogenous vasoactive intestinal peptide receptor. This potentiation was completely inhibited by H-89 and partially blocked by Rp-8-Br-cAMPS, inhibitors of protein kinase A. Optical monitoring of fluorescently labeled secretory granules showed slow migration toward the plasma membrane during Ca2+ elevations. Neither this Ca2+-dependent granule movement nor the number of granules found near the plasma membrane were detectably changed by raising cAMP, suggesting that cAMP potentiates Ca2+-dependent exocytosis at a later stage. A kinetic model was made of the exocytosis stimulated by UTP, trypsin, and Ca2+ ionophores with and without cAMP increase. In the model, without a cAMP rise, receptor activation stimulates exocytosis both by Ca2+ elevation and by the action of another messenger(s). With cAMP elevation the docking/priming step for secretory granules was accelerated, augmenting the releasable granule pool size, and the Ca2+ sensitivity of the final fusion step was increased, augmenting the rate of exocytosis. Presumably both cAMP actions require cAMP-dependent phosphorylation of target proteins. cAMP-dependent potentiation of Ca2+-induced exocytosis has physiological implications for mucin secretion and, possibly, for membrane protein insertion in the pancreatic duct. In addition, mechanisms underlying this potentiation of slow exocytosis may also exist in other cell systems. 相似文献
9.
Lee M Chung S Uhm DY Park MK 《Biochemical and biophysical research communications》2005,334(4):1241-1247
The effect of cAMP and PKC on zymogen granule exocytosis was investigated by simultaneously measuring cytosolic Ca2+ concentration ([Ca2+]c) and individual zymogen granule exocytosis in isolated mouse pancreatic acini. When acinar cells were stimulated with acetylcholine (ACh, 10 microM), exocytic events were detected through granule-attached apical membranes with [Ca2+]c rise. Application of secretin, forskolin (an adenylate cyclase activator), or PMA (a PKC activator) alone did not elicit any [Ca2+]c rise or zymogen granule exocytosis, but co-stimulation with ACh led to exocytosis in that the total number of secreted granules increased markedly without a significant difference in [Ca2+]c rises. When we evoked exocytosis by [Ca2+]c ramps, pretreatment with forskolin or PMA elicited exocytosis at lower [Ca2+]c levels. These results indicate that PKC or cAMP alone could not directly elicit zymogen granule exocytosis, but that they increase the total releasable pool by rendering zymogen granules more sensitive to Ca2+. 相似文献
10.
Rab proteins comprise a family of GTPases, conserved from yeast to mammals, which are integral components of membrane trafficking pathways. Rab3A is a neural/neuroendocrine-specific member of the Rab family involved in Ca(2+) -regulated exocytosis, where it functions in an inhibitory capacity controlling recruitment of secretory vesicles into a releasable pool at the plasma membrane. The effector by which Rab3A exerts its inhibitory effect is unclear as the Rab3A effectors Rabphilin and RIM have been excluded from for this role. One putative Rab3A effector in dense-core granule exocytosis is the cytosolic zinc finger protein, Noc2. We have established that overexpression of Noc2 in PC12 cells has a direct inhibitory effect upon Ca(2+)-triggered exocytosis in permeabilized cells. We demonstrate specific nucleotide-dependent binding of Noc2 to Rab3A and show that the inhibition of exocytosis is dependent upon this interaction since Rab3A binding-deficient mutants of Noc2 do not inhibit exocytosis. We propose that Noc2 may be a negative effector for Rab3A in regulated exocytosis of dense-core granules from endocrine cells. 相似文献
11.
O H Petersen D V Gallacher M Wakui D I Yule C C Petersen E C Toescu 《Cell calcium》1991,12(2-3):135-144
Receptor-activated cytoplasmic Ca2+ oscillations have been investigated using both single cell microfluorometry and voltage-clamp recording of Ca(2+)-dependent Cl- current in single internally perfused acinar cells. In these cells there is direct experimental evidence showing that the ACh-evoked [Ca2+]i fluctuations are due to an inositol trisphosphate-induced small steady Ca2+ release which in turn evokes repetitive Ca2+ spikes via a caffeine-sensitive Ca(2+)-induced Ca2+ release process. There is indirect evidence suggesting that receptor-activation in addition to generating the Ca2+ releasing messenger, inositol trisphosphate, also produces another regulator involved in the control of Ca2+ signal spreading. Intracellular inositol trisphosphate or Ca2+ infusion produce short duration repetitive spikes confined to the cytoplasmic area close to the plasma membrane, but these signals can be made to progress throughout the cell by addition of caffeine or by receptor activation. 相似文献
12.
Isolated rabbit pancreatic acinar cells, permeabilized by saponin treatment and incubated in the presence of 0.1 microM free Ca2+, accumulated 3.3 nmol of Ca2+/mg of acinar protein in an energy-dependent pool. Part of this energy-dependent pool could be released by GTP in a polyethylene glycol-dependent manner. The kinetics of GTP-induced release of Ca2+ showed a biphasic pattern with an initial rapid phase followed by a sustained slower phase. In contrast, IP3-induced release of Ca2+ was completed within 30 s following addition of IP3. No reuptake of Ca2+ was observed following GTP- or IP3-induced release of Ca2+. The GTP effect was independent of IP3 and not inhibited by Ca2+, indicating that the IP3-operated Ca2+ channel is not involved in GTP-induced release of Ca2+. The size of the IP3-releasable pool was not affected by GTP, indicating that GTP, when added to permeabilized acinar cells, does not promote the coupling between IP3-insensitive and IP3-sensitive Ca2+ accumulating organelles. Thus, in permeabilized acinar cells, GTP and IP3 act on different Ca2+ sequestering pools. Interestingly, however, comparison of the size of the GTP-releasable pool with that of the IP3-releasable pool for the cell preparations used in the present study, revealed an inversed relationship, indicating that at the time of permeabilization the GTP-releasable pool can be coupled to a greater or lesser extent to the IP3-releasable pool. This suggests that, in the intact cell, a GTP-dependent mechanism may exist that controls the size of the IP3-releasable pool by coupling IP3-insensitive to IP3-sensitive organelles. Moreover, this suggests that the extent of coupling is preserved during permeabilization. 相似文献
13.
Distinct characteristics of receptor-operated Ca2+ influx and refilling in pancreatic acinar cells 总被引:2,自引:0,他引:2
Ca2+ influx from the extracellular space in nonexcitable cells occurs via receptor-operated and refilling processes. However, they showed different characteristics with respect to the Mn2+ permeability, depletion of intracellular Ca2+ stores, and sensitivity to the K+ ionophore valinomycin in rat pancreatic acinar cells. While Mn2+ did not enter into the cells during the refilling phase, the opposite was true in receptor-operated Ca2+ influx (ROCI) evoked by carbachol (CCh). ROCI occurred in the absence of intracellular Ca2+ release from the stores. Valinomycin abolished the second response of Ca2+ elicited by CCh, whereas it had no effect on ROCI. These observations suggest that receptor-operated Ca2+ channels (ROCCs) and refilling channels may be different in rat pancreatic acinar cells. 相似文献
14.
Summary The presence of a coupled Na+/Ca2+ exchange system has been demonstrated in plasma membrane vesicles from rat pancreatic acinar cells. Na+/Ca2+ exchange was investigated by measuring45Ca2+ uptake and45Ca2+ efflux in the presence of sodium gradients and at different electrical potential differences across the membrane (=) in the presence of sodium. Plasma membranes were prepared by a MgCl2 precipitation method and characterized by marker enzyme distribution. When compared to the total homogenate, the typical marker for the plasma membrane, (Na++K+)-ATPase was enriched by 23-fold. Markers for the endoplasmic reticulum, such as RNA and NADPH cytochromec reductase, as well as for mitochondria, the cytochromec oxidase, were reduced by twofold, threefold and 10-fold, respectively. For the Na+/Ca2+ countertransport system, the Ca2+ uptake after 1 min of incubation was half-maximal at 0.62 mol/liter Ca2+ and at 20 mmol/liter Na+ concentration and maximal at 10 mol/liter Ca2+ and 150 mmol/liter Na+ concentration, respecitively. When Na+ was replaced by Li+, maximal Ca2+ uptake was 75% as compared to that in the presence of Na+. Amiloride (10–3 mol/liter) at 200 mmol/liter Na+ did not inhibit Na+/Ca2+ countertransport, whereas at low Na+ concentration (25 mmol/liter) amiloride exhibited dose-dependent inhibition to be 62% at 10–2 mol/liter. CFCCP (10–5 mol/liter) did not influence Na+/Ca2+ countertransport. Monensin inhibited dose dependently; at a concentration of 5×10–6 mol/liter inhibition was 80%. A SCN– or K+ diffusion potential (=), being positive at the vesicle inside, stimulated calcium uptake in the presence of sodium suggesting that Na+/Ca2+ countertransport operates electrogenically, i.e. with a stoichiometry higher than 2 Na+ for 1 Ca2+. In the absence of Na+, did not promote Ca2+ uptake. We conclude that in addition to ATP-dependent Ca2+ outward transport as characterized previously (E. Bayerdörffer, L. Eckhardt, W. Haase & 1. Schulz, 1985,J. Membrane Biol.
84:45–60) the Na+/Ca2+ countertransport system, as characterized in this study, represents a second transport system for the extrusion of calcium from the cell. Furthermore, the high affinity for calcium suggests that this system might participate in the regulation of the cytosolic free Ca2+ level. 相似文献
15.
Ca2(+)-sensitivity of inositol 1,4,5-trisphosphate-mediated Ca2+ release in permeabilized pancreatic acinar cells. 总被引:1,自引:0,他引:1
下载免费PDF全文

Hormonal and phorbol ester pretreatment of pancreatic acinar cells markedly decreases the Ins(1,4,5)P3-induced release of actively stored Ca2+ [Willems, Van Den Broek, Van Os & De Pont (1989) J. Biol. Chem. 264, 9762-9767]. Inhibition occurred at an ambient free Ca2+ concentration of 0.1 microM, suggesting a receptor-mediated increase in Ca2(+)-sensitivity of the Ins(1,4,5)P3-operated Ca2+ channel. To test this hypothesis, the Ca2(+)-dependence of Ins(1,4,5)P3-induced Ca2+ release was investigated. In the presence of 0.2 microM free Ca2+, permeabilized cells accumulated 0.9 nmol of Ca2+/mg of acinar protein in an energy-dependent pool. Uptake into this pool increased 2.2- and 3.3-fold with 1.0 and 2.0 microM free Ca2+ respectively. At 0.2, 1.0 and 2.0 microM free Ca2+, Ins(1,4,5)P3 maximally released 0.53 (56%), 0.90 (44%) and 0.62 (20%) nmol of Ca2+/mg of acinar protein respectively. Corresponding half-maximal stimulatory Ins(1,4,5)P3 concentrations were calculated to be 0.5, 0.6 and 1.4 microM, suggesting that the affinity of Ins(1,4,5)P3 for its receptor decreases beyond 1.0 microM free Ca2+. The possibility that an inhibitory effect of sub-micromolar Ca2+ is being masked by the concomitant increase in size of the releasable store is excluded, since Ca2+ release from cells loaded in the presence of 0.1 or 0.2 microM free Ca2+ and stimulated at higher ambient free Ca2+ was not inhibited below 1.0 microM free Ca2+. At 2.0 and 10.0 microM free Ca2+, Ca2+, Ca2+ release was inhibited by approx. 30% and 75% respectively. The results presented show that hormonal pretreatment does not lead to an increase in Ca2(+)-sensitivity of the release mechanism. Such an increase in Ca2(+)-sensitivity to sub-micromolar Ca2+ is required to explain sub-micromolar oscillatory changes in cytosolic free Ca2+ by a Ca2(+)-dependent negative-feedback mechanism. 相似文献
16.
In individual fura-2 loaded cells of rat pancreatic acini endothelin-1 (ET-1) (10-50 nM) induced sustained oscillations in [Ca2+]i. At higher concentrations a larger, but transient increase in [Ca2+]i was observed, which was largely unaffected by removal of extracellular Ca2+. ET-1 induced the release of Ca2+i from the same store as cholecystokinin (CCK), but with less potency. At concentrations of endothelin which transiently increased Ca2+, ET-1 increased the accumulation of inositol phosphates. Specific binding sites for 125I-endothelin were demonstrated on rat pancreatic acini. A single class of binding sites was identified with an apparent Kd 108 +/- 12 pM and Bmax of 171 +/- 17 fmol/mg for ET-1. The relative potency order for displacing [125I]ET was ET-1 greater than ET-2 greater than ET-3. In contrast to CCK and the non-phorbol ester tumour promoter Thapsigargin (TG) which induce both transient and sustained components of [Ca2+]i elevation, ET-1 failed to increase amylase release over the range 100 pM-1 microM. 相似文献
17.
The route of Ca2+ entry during reloading of the intracellular Ca2+ pool in pancreatic acini 总被引:5,自引:0,他引:5
To trace the route of Ca2+ entry and the role of the cytosolic Ca2+ pool in reloading of the internal stores of pancreatic acinar cells, Mn2+ influx into Fura 2-loaded cells and the effect of 1,2-bis(2-aminophenoxyethane-N,N,N',N'-tetraacetic acid (BAPTA) on Ca2+ storage in intracellular stores and reloading were examined. Treatment of acini suspended in Ca2(+)-free medium with carbachol (cell stimulation) or carbachol and atropine (reloading period) resulted in 2-fold increase in the rate of Mn2+ influx. Increasing Ca2+ permeability of the plasma membrane by elevation of extracellular pH from 7.4 to 8.2 further increased the rate of Mn2+ influx observed during cell stimulation and the reloading period. Loading the acini with BAPTA by incubation with 50 microM of the acetomethoxy form of BAPTA (BAPTA/AM) was followed by a transient reduction in free cytosolic Ca2+ concentration ((Ca2+]i). To compensate for the increased Ca2+ buffering capacity in the cytosol the acini incorporated Ca2+ from the external medium. Although BAPTA prevented changes in free cytosolic Ca2+ concentration during carbachol and atropine treatment, it had no apparent effect on Ca2+ content of the internal stores or the ability of agonists to release Ca2+ from these stores. Loading the cytosol with BAPTA considerably reduced the rate of Ca2+ reloading. These observations are not compatible with direct communication between the medium and the inositol 1,4,5-trisphosphate releasable pool and provide direct evidence for Ca2+ entry into the cytosol prior to its uptake into the intracellular pool, both during cell stimulation and the Ca2+ reloading. 相似文献
18.
Yamasaki M Masgrau R Morgan AJ Churchill GC Patel S Ashcroft SJ Galione A 《The Journal of biological chemistry》2004,279(8):7234-7240
How different extracellular stimuli can evoke different spatiotemporal Ca2+ signals is uncertain. We have elucidated a novel paradigm whereby different agonists use different Ca2+-storing organelles ("organelle selection") to evoke unique responses. Some agonists select the endoplasmic reticulum (ER), and others select lysosome-related (acidic) organelles, evoking spatial Ca2+ responses that mirror the organellar distribution. In pancreatic acinar cells, acetylcholine and bombesin exclusively select the ER Ca2+ store, whereas cholecystokinin additionally recruits a lysosome-related organelle. Similarly, in a pancreatic beta cell line MIN6, acetylcholine selects only the ER, whereas glucose mobilizes Ca2+ from a lysosome-related organelle. We also show that the key to organelle selection is the agonist-specific coupling messenger(s) such that the ER is selected by recruitment of inositol 1,4,5-trisphosphate (or cADP-ribose), whereas lysosome-related organelles are selected by NAADP. 相似文献
19.
The effects of osmotically-induced cell swelling on cytoplasmic free Ca2+ concentration ([Ca2+]i) were studied in acinar cells from rat submandibular gland using microspectrofluorimetry. Video-imaging techniques were also used to measure cell volume. Hypotonic stress (78% control tonicity) caused rapid cell swelling reaching a maximum relative volume of 1.78 +/- 0.05 (n = 5) compared to control. This swelling was followed by regulatory volume decrease, since relative cell volume decreased significantly to 1.61 +/- 0.08 (n = 5) after 10 min exposure to hypotonic medium. Osmotically induced cell swelling evoked by medium of either 78% or 66% tonicity caused a biphasic increase of [Ca2+]i. The rapid phase of this increase in [Ca2+]i was due to release of Ca2 + from intracellular stores, since it was also observed in cells bathed in Ca2+-free solution. The peak increase of [Ca2+]i induced by cell swelling was 3.40 +/- 0.49 (Fura-2 F340/F380 fluorescence ratio, n = 11) and 3.17 +/- 0.43 (n = 17) in the presence and the absence of extracellular Ca2+, respectively, corresponding to an absolute [Ca2+]i of around 1 microm. We found that around two-thirds of cells tested still showed some swelling-induced Ca2+ release (SICR) even after maximal concentrations (10(-5) M - 10(-4) M) of carbachol had been applied to empty agonist-sensitive intracellular Ca2+ stores. This result was confirmed and extended using thapsigargin to deplete intracellular Ca2+ pools. Hypotonic shock still raised [Ca2+]i in cells pretreated with thapsigargin, confirming that at least some SICR occurred from agonist-insensitive stores. Furthermore, SICR was largely inhibited by pretreatment of cells with carbonyl cyanide m-cholorophenyl hydrazone (CCCP) or ruthenium red, inhibitors of mitochondrial Ca2+ uptake. Our results suggest that the increase in [Ca2+]i, which underlies regulatory volume decrease in submandibular acinar cells, results from release of Ca2+ from both agonist-sensitive and mitochondrial Ca2+ stores. 相似文献
20.
Different patterns of receptor-activated cytoplasmic Ca2+ oscillations in single pancreatic acinar cells: dependence on receptor type, agonist concentration and intracellular Ca2+ buffering.
下载免费PDF全文

Agonist-specific cytosolic Ca2+ oscillation patterns can be observed in individual cells and these have been explained by the co-existence of separate oscillatory mechanisms. In pancreatic acinar cells activation of muscarinic receptors typically evokes sinusoidal oscillations whereas stimulation of cholecystokinin (CCK) receptors evokes transient oscillations consisting of Ca2+ waves with long intervals between them. We have monitored changes in the cytosolic Ca2+ concentration ([Ca2+]i) by measuring Ca2(+)-activated Cl- currents in single internally perfused mouse pancreatic acinar cells. With minimal intracellular Ca2+ buffering we found that low concentrations of both ACh (50 nM) and CCK (10 pM) evoked repetitive short-lasting Ca2+ spikes of the same duration and frequency, but the probability of a spike being followed by a longer and larger Ca2+ wave was low for ACh and high for CCK. The probability that the receptor-evoked shortlasting Ca2+ spikes would initiate more substantial Ca2+ waves was dramatically increased by intracellular perfusion with solutions containing high concentrations of the mobile low affinity Ca2+ buffers citrate (10-40 mM) or ATP (10-20 mM). The different Ca2+ oscillation patterns normally induced by ACh and CCK would therefore appear not to be caused by separate mechanisms. We propose that specific receptor-controlled modulation of Ca2+ signal spreading, either by regulation of Ca2+ uptake into organelles and/or cellular Ca2+ extrusion, or by changing the sensitivity of the Ca2(+)-induced Ca2+ release mechanism, can be mimicked experimentally by different degrees of cytosolic Ca2+ buffering and can account for the various cytosolic Ca2+ spike patterns. 相似文献