首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When group interests clash with individual ones, maintaining cooperation poses a problem. However, cooperation can be facilitated by introducing reputational incentives. Through indirect reciprocity, people who cooperate in a social dilemma are more likely to receive cooperative acts from others. Another mechanism that enhances group cooperation is reputation-based partner choice, or competitive altruism. According to this framework, cooperators benefit via increased access to cooperative partners. Our study compared the effectiveness of indirect reciprocity and competitive altruism in re-establishing cooperation after the typical decline found during repeated public goods games. Twenty groups of four participants first played a series of public goods games, which confirmed the expected decline. Subsequently, public goods games were alternated with either indirect reciprocity games (in which participants had an opportunity to give to another individual from whom they would never receive a direct return) or competitive altruism games (in which they could choose partners for directly reciprocal interactions). We found that public goods game contributions increased when interspersed with competitive altruism games; they were also higher than in public goods games interspersed with indirect reciprocity games. Investing in reputation by increasing contributions to public goods was a profitable strategy in that it increased returns in subsequent competitive altruism and indirect reciprocity games. There was also some evidence that these returns were greater under competitive altruism than indirect reciprocity. Our findings indicate that strategic reputation building through competitive altruism provides an effective alternative to indirect reciprocity as a means for restoring cooperation in social dilemmas.  相似文献   

2.
The Public Goods Game is one of the most popular models for studying the origin and maintenance of cooperation. In its simplest form, this evolutionary game has two regimes: defection goes to fixation if the multiplication factor r is smaller than the interaction group size N, whereas cooperation goes to fixation if the multiplication factor r is larger than the interaction group size N. Hauert et al. [Hauert, C., Holmes, M., Doebeli, M., 2006a. Evolutionary games and population dynamics: Maintenance of cooperation in public goods games. Proc. R. Soc. Lond. B 273, 2565-2570] have introduced the Ecological Public Goods Game by viewing the payoffs from the evolutionary game as birth rates in a population dynamic model. This results in a feedback between ecological and evolutionary dynamics: if defectors are prevalent, birth rates are low and population densities decline, which leads to smaller interaction groups for the Public Goods game, and hence to dominance of cooperators, with a concomitant increase in birth rates and population densities. This feedback can lead to stable co-existence between cooperators and defectors. Here we provide a detailed analysis of the dynamics of the Ecological Public Goods Game, showing that the model exhibits various types of bifurcations, including supercritical Hopf bifurcations, which result in stable limit cycles, and hence in oscillatory co-existence of cooperators and defectors. These results show that including population dynamics in evolutionary games can have important consequences for the evolutionary dynamics of cooperation.  相似文献   

3.
Deng K  Chu T 《PloS one》2011,6(10):e25496
The linear or threshold Public Goods game (PGG) is extensively accepted as a paradigmatic model to approach the evolution of cooperation in social dilemmas. Here we explore the significant effect of nonlinearity of the structures of public goods on the evolution of cooperation within the well-mixed population by adopting Darwinian dynamics, which simultaneously consider the evolution of populations and strategies on a continuous adaptive landscape, and extend the concept of evolutionarily stable strategy (ESS) as a coalition of strategies that is both convergent-stable and resistant to invasion. Results show (i) that in the linear PGG contributing nothing is an ESS, which contradicts experimental data, (ii) that in the threshold PGG contributing the threshold value is a fragile ESS, which cannot resist the invasion of contributing nothing, and (iii) that there exists a robust ESS of contributing more than half in the sigmoid PGG if the return rate is relatively high. This work reveals the significant effect of the nonlinearity of the structures of public goods on the evolution of cooperation, and suggests that, compared with the linear or threshold PGG, the sigmoid PGG might be a more proper model for the evolution of cooperation within the well-mixed population.  相似文献   

4.
It is often assumed that in public goods games, contributors are either strong or weak players and each individual has an equal probability of exhibiting cooperation. It is difficult to explain why the public good is produced by strong individuals in some cooperation systems, and by weak individuals in others. Viewing the asymmetric volunteer''s dilemma game as an evolutionary game, we find that whether the strong or the weak players produce the public good depends on the initial condition (i.e., phenotype or initial strategy of individuals). These different evolutionarily stable strategies (ESS) associated with different initial conditions, can be interpreted as the production modes of public goods of different cooperation systems. A further analysis revealed that the strong player adopts a pure strategy but mixed strategies for the weak players to produce the public good, and that the probability of volunteering by weak players decreases with increasing group size or decreasing cost-benefit ratio. Our model shows that the defection probability of a “strong” player is greater than the “weak” players in the model of Diekmann (1993). This contradicts Selten''s (1980) model that public goods can only be produced by a strong player, is not an evolutionarily stable strategy, and will therefore disappear over evolutionary time. Our public good model with ESS has thus extended previous interpretations that the public good can only be produced by strong players in an asymmetric game.  相似文献   

5.
People often deviate from their individual Nash equilibrium strategy in game experiments based on the prisoner’s dilemma (PD) game and the public goods game (PGG), whereas conditional cooperation, or conformity, is supported by the data from these experiments. In a complicated environment with no obvious “dominant” strategy, conformists who choose the average strategy of the other players in their group could be able to avoid risk by guaranteeing their income will be close to the group average. In this paper, we study the repeated PD game and the repeated m-person PGG, where individuals’ strategies are restricted to the set of conforming strategies. We define a conforming strategy by two parameters, initial action in the game and the influence of the other players’ choices in the previous round. We are particularly interested in the tit-for-tat (TFT) strategy, which is the well-known conforming strategy in theoretical and empirical studies. In both the PD game and the PGG, TFT can prevent the invasion of non-cooperative strategy if the expected number of rounds exceeds a critical value. The stability analysis of adaptive dynamics shows that conformity in general promotes the evolution of cooperation, and that a regime of cooperation can be established in an AllD population through TFT-like strategies. These results provide insight into the emergence of cooperation in social dilemma games.  相似文献   

6.
Not only animals, plants and microbes but also humans cooperate in groups. The evolution of cooperation in a group is an evolutionary puzzle, because defectors always obtain a higher benefit than cooperators. When people participate in a group, they evaluate group member’s reputations and then decide whether to participate in it. In some groups, membership is open to all who are willing to participate in the group. In other groups, a candidate is excluded from membership if group members regard the candidate’s reputation as bad. We developed an evolutionary game model and investigated how participation in groups and ostracism influence the evolution of cooperation in groups when group members play the voluntary public goods game, by means of computer simulation. When group membership is open to all candidates and those candidates can decide whether to participate in a group, cooperation cannot be sustainable. However, cooperation is sustainable when a candidate cannot be a member unless all group members admit them to membership. Therefore, it is not participation in a group but rather ostracism, which functions as costless punishment on defectors, that is essential to sustain cooperation in the voluntary public goods game.  相似文献   

7.
Harrison F  El Mouden C 《PloS one》2011,6(11):e27623
In recent years, significant advances have been made in understanding the adaptive (ultimate) and mechanistic (proximate) explanations for the evolution and maintenance of cooperation. Studies of cooperative behaviour in humans invariably use economic games. These games have provided important insights into the mechanisms that maintain economic and social cooperation in our species. However, they usually rely on the division of monetary tokens which are given to participants by the investigator. The extent to which behaviour in such games may reflect behaviour in the real world of biological markets--where money must be earned and behavioural strategies incur real costs and benefits--is unclear. To provide new data on the potential scale of this problem, we investigated whether people behaved differently in two standard economic games (public goods game and dictator game) when they had to earn their monetary endowments through the completion of dull or physically demanding tasks, as compared with simply being given the endowment. The requirement for endowments to be 'earned' through labour did not affect behaviour in the dictator game. However, the requirement to complete a dull task reduced cooperation in the public goods game among the subset of participants who were not familiar with game theory. There has been some effort to test whether the conclusions drawn from standard, token-based cooperation games adequately reflect cooperative behaviour 'in the wild.' However, given the almost total reliance on such games to study cooperation, more exploration of this issue would be welcome. Our data are not unduly worrying, but they do suggest that further exploration is needed if we are to make general inferences about human behaviour from the results of structured economic games.  相似文献   

8.
Understanding the emergence of cooperation in spatial public goods game remains a grand challenge across disciplines. In most previous studies, it is assumed that the investments of all the cooperators are identical, and often equal to 1. However, it is worth mentioning that players are diverse and heterogeneous when choosing actions in the rapidly developing modern society and researchers have shown more interest to the heterogeneity of players recently. For modeling the heterogeneous players without loss of generality, it is assumed in this work that the investment of a cooperator is a random variable with uniform distribution, the mean value of which is equal to 1. The results of extensive numerical simulations convincingly indicate that heterogeneous investments can promote cooperation. Specifically, a large value of the variance of the random variable can decrease the two critical values for the result of behavioral evolution effectively. Moreover, the larger the variance is, the better the promotion effect will be. In addition, this article has discussed the impact of heterogeneous investments when the coevolution of both strategy and investment is taken into account. Comparing the promotion effect of coevolution of strategy and investment with that of strategy imitation only, we can conclude that the coevolution of strategy and investment decreases the asymptotic fraction of cooperators by weakening the heterogeneity of investments, which further demonstrates that heterogeneous investments can promote cooperation in spatial public goods game.  相似文献   

9.
Collective action, or the large-scale cooperation in the pursuit of public goods, has been suggested to have evolved through cultural group selection. Previous research suggests that the costly punishment of group members who do not contribute to public goods plays an important role in the resolution of collective action dilemmas. If large-scale cooperation sustained by the punishment of defectors has evolved through the mechanism of cultural group selection, two implications regarding costly punishment follow: (1) that people are more willing to punish defecting group members in a situation of intergroup competition than in a single-group social dilemma game and (2) that levels of "perverse" punishment of cooperators are not affected by intergroup competition. We find confirmation for these hypotheses. However, we find that the effect of intergroup competition on the punishment of defectors is fully explained by the stronger conditionality of punishment on expected punishment levels in the competition condition.  相似文献   

10.
The emergence and abundance of cooperation in nature poses a tenacious and challenging puzzle to evolutionary biology. Cooperative behaviour seems to contradict Darwinian evolution because altruistic individuals increase the fitness of other members of the population at a cost to themselves. Thus, in the absence of supporting mechanisms, cooperation should decrease and vanish, as predicted by classical models for cooperation in evolutionary game theory, such as the Prisoner's Dilemma and public goods games. Traditional approaches to studying the problem of cooperation assume constant population sizes and thus neglect the ecology of the interacting individuals. Here, we incorporate ecological dynamics into evolutionary games and reveal a new mechanism for maintaining cooperation. In public goods games, cooperation can gain a foothold if the population density depends on the average population payoff. Decreasing population densities, due to defection leading to small payoffs, results in smaller interaction group sizes in which cooperation can be favoured. This feedback between ecological dynamics and game dynamics can generate stable coexistence of cooperators and defectors in public goods games. However, this mechanism fails for pairwise Prisoner's Dilemma interactions and the population is driven to extinction. Our model represents natural extension of replicator dynamics to populations of varying densities.  相似文献   

11.
Brown SP  Taddei F 《PloS one》2007,2(7):e593
An implicit assumption underpins basic models of the evolution of cooperation, mutualism and altruism: The benefits (or pay-offs) of cooperation and defection are defined by the current frequency or distribution of cooperators. In social dilemmas involving durable public goods (group resources that can persist in the environment-ubiquitous from microbes to humans) this assumption is violated. Here, we examine the consequences of relaxing this assumption, allowing pay-offs to depend on both current and past numbers of cooperators. We explicitly trace the dynamic of a public good created by cooperators, and define pay-offs in terms of the current public good. By raising the importance of cooperative history in determining the current fate of cooperators, durable public goods cause novel dynamics (e.g., transient increases in cooperation in Prisoner's Dilemmas, oscillations in Snowdrift Games, or shifts in invasion thresholds in Stag-hunt Games), while changes in durability can transform one game into another, by moving invasion thresholds for cooperation or conditions for coexistence with defectors. This enlarged view challenges our understanding of social cheats. For instance, groups of cooperators can do worse than groups of defectors, if they inherit fewer public goods, while a rise in defectors no longer entails a loss of social benefits, at least not in the present moment (as highlighted by concerns over environmental lags). Wherever durable public goods have yet to reach a steady state (for instance due to external perturbations), the history of cooperation will define the ongoing dynamics of cooperators.  相似文献   

12.
Evolutionary game theory provides an appropriate tool for investigating the competition and diffusion of behavioral traits in biological or social populations. A core challenge in evolutionary game theory is the strategy selection problem: Given two strategies, which one is favored by the population? Recent studies suggest that the answer depends not only on the payoff functions of strategies but also on the interaction structure of the population. Group interactions are one of the fundamental interactive modes within populations. This work aims to investigate the strategy selection problem in evolutionary game dynamics on group interaction networks. In detail, the strategy selection conditions are obtained for some typical networks with group interactions. Furthermore, the obtained conditions are applied to investigate selection between cooperation and defection in populations. The conditions for evolution of cooperation are derived for both the public goods game and volunteer’s dilemma game. Numerical experiments validate the above analytical results.  相似文献   

13.
The public goods game represents a straightforward generalization of the prisoner's dilemma to an arbitrary number of players. Since the dominant strategy is to defect, both classical and evolutionary game theory predict the asocial outcome that no player contributes to the public goods. In contrast to the compulsory public goods game, optional participation provides a natural way to avoid deadlocks in the state of mutual defection. The three resulting strategies--collaboration or defection in the public goods game, as well as not joining at all--are studied by means of a replicator dynamics, which can be completely analysed in spite of the fact that the payoff terms are nonlinear. If cooperation is valuable enough, the dynamics exhibits a rock-scissors-paper type of cycling between the three strategies, leading to sizeable average levels of cooperation in the population. Thus, voluntary participation makes cooperation feasible. But for each strategy, the average payoff value remains equal to the earnings of those not participating in the public goods game.  相似文献   

14.
The production of diffusible molecules that promote survival and growth is common in bacterial and eukaryotic cell populations, and can be considered a form of cooperation between cells. While evolutionary game theory shows that producers and non-producers can coexist in well-mixed populations, there is no consensus on the possibility of a stable polymorphism in spatially structured populations where the effect of the diffusible molecule extends beyond one-step neighbours. I study the dynamics of biological public goods using an evolutionary game on a lattice, taking into account two assumptions that have not been considered simultaneously in existing models: that the benefit of the diffusible molecule is a non-linear function of its concentration, and that the molecule diffuses according to a decreasing gradient. Stable coexistence of producers and non-producers is observed when the benefit of the molecule is a sigmoid function of its concentration, while strictly diminishing returns lead to coexistence only for very specific parameters and linear benefits never lead to coexistence. The shape of the diffusion gradient is largely irrelevant and can be approximated by a step function. Since the effect of a biological molecule is generally a sigmoid function of its concentration (as described by the Hill equation), linear benefits or strictly diminishing returns are not an appropriate approximations for the study of biological public goods. A stable polymorphism of producers and non-producers is in line with the predictions of evolutionary game theory and likely to be common in cell populations.  相似文献   

15.
Public goods games are models of social dilemmas where cooperators pay a cost for the production of a public good while defectors free ride on the contributions of cooperators. In the traditional framework of evolutionary game theory, the payoffs of cooperators and defectors result from interactions in groups formed by binomial sampling from an infinite population. Despite empirical evidence showing that group-size distributions in nature are highly heterogeneous, most models of social evolution assume that the group size is constant. In this article, I remove this assumption and explore the effects of having random group sizes on the evolutionary dynamics of public goods games. By a straightforward application of Jensen's inequality, I show that the outcome of general nonlinear public goods games depends not only on the average group size but also on the variance of the group-size distribution. This general result is illustrated with two nonlinear public goods games (the public goods game with discounting or synergy and the N-person volunteer's dilemma) and three different group-size distributions (Poisson, geometric, and Waring). The results suggest that failing to acknowledge the natural variation of group sizes can lead to an underestimation of the actual level of cooperation exhibited in evolving populations.  相似文献   

16.
Public goods games paraphrase the problem of cooperation in game theoretical terms. Cooperators contribute to a public good and thereby increase the welfare of others at a cost to themselves. Defectors consume the public good but do not pay its cost and therefore outperform cooperators. Hence, according to genetic or cultural evolution, defectors should be favored and the public good disappear – despite the fact that groups of cooperators are better off than groups of defectors. The maximization of short term individual profits causes the demise of the common resource to the detriment of all. This outcome can be averted by introducing incentives to cooperate. Negative incentives based on the punishment of defectors efficiently stabilize cooperation once established but cannot initiate cooperation. Here we consider the complementary case of positive incentives created by allowing individuals to reward those that contribute to the public good. The finite-population stochastic dynamics of the public goods game with reward demonstrate that reward initiates cooperation by providing an escape hatch out of states of mutual defection. However, in contrast to punishment, reward is unable to stabilize cooperation but, instead, gives rise to a persistent minority of cooperators.  相似文献   

17.
Costly signaling and cooperation.   总被引:1,自引:0,他引:1  
We propose an explanation of cooperation among unrelated members of a social group in which cooperation evolves because it constitutes an honest signal of the member's quality as a mate, coalition partner or competitor, and therefore results in advantageous alliances for those signaling in this manner. Our model is framed as a multi-player public goods game that involves no repeated or assortative interactions, so that non-cooperation would be a dominant strategy if there were no signaling benefits. We show that honest signaling of underlying quality by providing a public good to group members can be evolutionarily stable, and can proliferate in a population in which it is initially rare, provided that certain plausible conditions hold, including a link between group-beneficial signaling and underlying qualities of the signaler that would be of benefit to a potential mate or alliance partner. Our model applies to a range of cooperative interactions, including unconditionally sharing individually consumable resources, participating in group raiding or defense, and punishing free-riding or other violations of social norms.  相似文献   

18.
It is one of the fundamental problems in biology and social sciences how to maintain high levels of cooperation among selfish individuals. Theorists present an effective mechanism promoting cooperation by allowing for voluntary participation in public goods games. But Nash's theory predicts that no one can do better or worse than loners (players unwilling to join the public goods game) in the long run, and that the frequency of participants is independent of loners’ payoff. In this paper, we introduce a degree of rationality and investigate the model by means of an approximate best response dynamics. Our research shows that the payoffs of the loners have a significant effect in anonymous voluntary public goods games by this introduction and that the dynamics will drive the system to a fixed point, which is different from the Nash equilibrium. In addition, we also qualitatively explain the existing experimental results.  相似文献   

19.
Based on individual variation in cooperative inclinations, we define the “hard problem of cooperation” as that of achieving high levels of cooperation in a group of non-cooperative types. Can the hard problem be solved by institutions with monitoring and sanctions? In a laboratory experiment we find that the answer is affirmative if the institution is imposed on the group but negative if development of the institution is left to the group to vote on. In the experiment, participants were divided into groups of either cooperative types or non-cooperative types depending on their behavior in a public goods game. In these homogeneous groups they repeatedly played a public goods game regulated by an institution that incorporated several of the key properties identified by Ostrom: operational rules, monitoring, rewards, punishments, and (in one condition) change of rules. When change of rules was not possible and punishments were set to be high, groups of both types generally abided by operational rules demanding high contributions to the common good, and thereby achieved high levels of payoffs. Under less severe rules, both types of groups did worse but non-cooperative types did worst. Thus, non-cooperative groups profited the most from being governed by an institution demanding high contributions and employing high punishments. Nevertheless, in a condition where change of rules through voting was made possible, development of the institution in this direction was more often voted down in groups of non-cooperative types. We discuss the relevance of the hard problem and fit our results into a bigger picture of institutional and individual determinants of cooperative behavior.  相似文献   

20.
Explaining unconditional cooperation, such as donations to charities or contributions to public goods, continues to present a problem. One possibility is that cooperation can pay through developing a reputation that makes one more likely to be chosen for a profitable cooperative partnership, a process termed competitive altruism (CA) or reputation-based partner choice. Here, we show, to our knowledge, for the first time, that investing in a cooperative reputation can bring net benefits through access to more cooperative partners. Participants played a public goods game (PGG) followed by an opportunity to select a partner for a second cooperative game. We found that those who gave more in the PGG were more often selected as desired partners and received more in the paired cooperative game. Reputational competition was even stronger when it was possible for participants to receive a higher payoff from partner choice. The benefits of being selected by a more cooperative partner outweighed the costs of cooperation in the reputation building phase. CA therefore provides an alternative to indirect reciprocity as an explanation for reputation-building behaviour. Furthermore, while indirect reciprocity depends upon individuals giving preference to those of good standing, CA can explain unconditional cooperation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号