首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hu X  Holland EC 《Mutation research》2005,576(1-2):54-65
Gliomas are the most common primary tumors that arise from glial cells and their precursors in the central nervous system. Most of the genetic alterations identified in human gliomas result in signal transduction abnormalities or disruption of cell cycle arrest pathways. Over the past years, several mouse glioma models have been generated based on human genetic abnormalities and the induced gliomas exhibit histological similarities to their human counterparts. There is emerging evidence suggesting that an oncogenic signaling initiating tumorigenesis is also required for tumor maintenance, these glioma models can be used to further characterize the mechanisms of oncogenic signaling in tumor formation, as well as identify molecular targets in preclinical trials.  相似文献   

2.
Recent studies cast doubt on the value of traditionally used models as tools for testing therapies for human cancer. Although the standard practice of xenografting tumors into immunocompromised mice generates reproducible tumors, drug testing in these models has low predictive power when compared to the clinical responses in Phase II trials. The use of tumor-bearing genetically engineered mouse models holds promise for improving preclinical testing. These models recapitulate specific molecular pathways in tumor initiation or progression and provide a biological system in which to study the disease process for assessing efficacy of new therapies and proof-of-principle for testing molecularly targeted drugs. In this review, we discuss the advantages and limitations of genetically engineered mice and plausible solutions for adapting these valuable tumors for wider use in preclinical testing by transplantation into na?ve recipients. We also provide examples of comparative molecular analysis of mammary tumors from MMTV-Polyoma Middle-T antigen and MMTV-wnt1 models as tools for finding clinical correlates, validating existing models and guiding the development of new genetically engineered mouse models for cancer.  相似文献   

3.
Animal models of human diseases that accurately recapitulate clinical pathology are indispensable for understanding molecular mechanisms and advancing preclinical studies. The Alzheimer's disease (AD) research community has historically used first‐generation transgenic (Tg) mouse models that overexpress proteins linked to familial AD (FAD), mutant amyloid precursor protein (APP), or APP and presenilin (PS). These mice exhibit AD pathology, but the overexpression paradigm may cause additional phenotypes unrelated to AD. Second‐generation mouse models contain humanized sequences and clinical mutations in the endogenous mouse App gene. These mice show Aβ accumulation without phenotypes related to overexpression but are not yet a clinical recapitulation of human AD. In this review, we evaluate different APP mouse models of AD, and review recent studies using the second‐generation mice. We advise AD researchers to consider the comparative strengths and limitations of each model against the scientific and therapeutic goal of a prospective preclinical study.  相似文献   

4.
Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and highly resistant to available chemotherapies. Mammalian target of rapamycin (mTOR) functions to regulate protein translation, angiogenesis and cell cycle progression in many cancers including HCC. In the present study, subcutaneous patient-derived HCC xenografts were used to study the effects of an mTOR inhibitor, RAD001 (everolimus), on tumour growth, apoptosis and angiogenesis. We report that oral administration of RAD001 to mice bearing patient-derived HCC xenografts resulted in a dose-dependent inhibition of tumour growth. RAD001-induced growth suppression was associated with inactivation of downstream targets of mTOR, reduction in VEGF expression and microvessel density, inhibition of cell proliferation, up-regulation of p27Kip1 and down-regulation of p21Cip1/Waf1, Cdk-6, Cdk-2, Cdk-4, cdc-25C, cyclin B1 and c-Myc. Our data indicate that the mTOR pathway plays an important role in angiogenesis, cell cycle progression and proliferation of liver cancer cells. Our study provides a strong rationale for clinical investigation of mTOR inhibitor RAD001 in patients with HCC.  相似文献   

5.
Hepatocellular carcinoma (HCC) represents ~90% of all cases of primary liver cancer and occurs predominantly in patients with underlying chronic liver disease and cirrhosis. Establishing appropriate animal models for HCC is required for basic and translational studies, especially the models that can recapitulate one of the human disease settings. Current animal models can be categorized as chemically-induced, genetically-engineered, xenograft, or a combination of these with each other or with a metabolic insult. A single approach to resemble human HCC in animals is not sufficient. Combining pathogenic insults in animal models may more realistically recapitulate the multiple etiologic agents occurring in humans. Combining chemical injury with metabolic disorder or alcohol consumption in mice reduces the time taken to hepatocarcinogenesis. Genetically-engineering weak activation of HCC-promoting pathways combined with disease-specific injury models will possibly mimic the pathophysiology of human HCC in distinct clinical settings.  相似文献   

6.
Breast-conserving surgery for ductal carcinoma in situ (DCIS) is often combined with irradiation, reducing recurrence rates to 20% within 10 years; however, there is no change in overall survival. Evidence in the invasive breast indicates that breast cancer stem cells (CSCs) are radiotherapy-resistant and are capable of re-initiating a tumor recurrence; hence, targeting CSCs in high risk DCIS patient may improve survival. HER2 is overexpressed in 20% of DCIS and is known to be highly active in breast CSCs; we therefore investigated the effect of Lapatinib on DCIS CSC activity using 2 in vitro culture systems. Two DCIS cell lines DCIS.com (HER2 normal) and SUM225 (HER2 overexpressed) as well as DCIS cells from patient samples (n = 18) were cultured as mammospheres to assess CSC activity and in differentiated 3D-matrigel culture to determine effects within the non-CSCs. Mammosphere formation was reduced regardless of HER2 status, although this was more marked within the HER2-positive samples. When grown as differentiated DCIS acini in 3D-matrigel culture, Lapatinib only reduced acini size in the HER2-positive samples via decreased proliferation. Further investigation revealed lapatinib did not reduce self-renewal activity in the CSC population, but their proliferation was decreased regardless of HER2 status. In conclusion we show Lapatinib can reduce DCIS CSC activity, suggesting that the use of Lapatinib in high-risk DCIS patients has the potential to reduce recurrence and the progression of DCIS to invasive disease.  相似文献   

7.
8.
A20 was initially identified as a primary gene product following TNF α treatment in human umbilical vein endothelial cells. Increased A20 expression is associated with tumorigenesis in many cancers, whereas the loss of A20 function is linked to lymphoma. It has been reported that A20 protects cells from TRAIL-induced apoptosis; however, the mechanism by which A20 is involved is still largely unknown. Our results indicate that TRAIL induces the hepatocellular carcinoma apoptosis associated with A20 knockdown in a concentration-dependent manner. TRAIL-induced apoptosis requires p18 caspase-8 activation, and, the activation of caspase-8 is at least in part, due to the direct cleavage of RIP1 by A20 knockdown. These findings suggest that A20 modulates the sensitivity to TRAIL by RIP1 ubiquitination, thereby repressing the recruitment and activation of pro-caspase-8 into the active form caspase-8. Thus, our study suggests that A20 protects against TRAIL-induced apoptosis through the regulation of RIP1 ubiquitination.  相似文献   

9.
Aberrant expression of the progenitor marker Neuron-glia 2 (NG2/CSPG4) or melanoma proteoglycan on cancer cells and angiogenic vasculature is associated with an aggressive disease course in several malignancies including glioblastoma multiforme (GBM) and melanoma. Thus, we investigated the mechanism of NG2 mediated malignant progression and its potential as a therapeutic target in clinically relevant GBM and melanoma animal models. Xenografting NG2 overexpressing GBM cell lines resulted in increased growth rate, angiogenesis and vascular permeability compared to control, NG2 negative tumours. The effect of abrogating NG2 function was investigated after intracerebral delivery of lentivirally encoded shRNAs targeting NG2 in patient GBM xenografts as well as in established subcutaneous A375 melanoma tumours. NG2 knockdown reduced melanoma proliferation and increased apoptosis and necrosis. Targeting NG2 in two heterogeneous GBM xenografts significantly reduced tumour growth and oedema levels, angiogenesis and normalised vascular function. Vascular normalisation resulted in increased tumour invasion and decreased apoptosis and necrosis. We conclude that NG2 promotes tumour progression by multiple mechanisms and represents an amenable target for cancer molecular therapy.  相似文献   

10.
Hepatocellular carcinoma (HCC) is a deadly malignancy characterized at the epigenetic level by global DNA hypomethylation and focal hypermethylation on the promoter of tumor suppressor genes. In most cases it develops on a background of liver steatohepatitis, fibrosis, and cirrhosis. Guadecitabine (SGI-110) is a second-generation hypomethylating agent, which inhibits DNA methyltransferases. Guadecitabine is formulated as a dinucleotide of decitabine and deoxyguanosine that is resistant to cytidine deaminase (CDA) degradation and results in prolonged in vivo exposure to decitabine following small volume subcutaneous administration of guadecitabine. Here we found that guadecitabine is an effective demethylating agent and is able to prevent HCC progression in pre-clinical models. In a xenograft HCC HepG2 model, guadecitabine impeded tumor growth and inhibited angiogenesis, while it could not prevent liver fibrosis and inflammation in a mouse model of steatohepatitis. Demethylating efficacy of guadecitabine on LINE-1 elements was found to be the highest 8 d post-infusion in blood samples of mice. Analysis of a panel of human HCC vs. normal tissue revealed a signature of hypermethylated tumor suppressor genes (CDKN1A, CDKN2A, DLEC1, E2F1, GSTP1, OPCML, E2F1, RASSF1, RUNX3, and SOCS1) as detected by methylation-specific PCR. A pronounced demethylating effect of guadecitabine was obtained also in the promoters of a subset of tumor suppressors genes (CDKN2A, DLEC1, and RUNX3) in HepG2 and Huh-7 HCC cells. Finally, we analyzed the role of macroH2A1, a variant of histone H2A, an oncogene upregulated in human cirrhosis/HCC that synergizes with DNA methylation in suppressing tumor suppressor genes, and it prevents the inhibition of cell growth triggered by decitabine in HCC cells. Guadecitabine, in contrast to decitabine, blocked growth in HCC cells overexpressing macroH2A1 histones and with high CDA levels, despite being unable to fully demethylate CDKN2A, RUNX3, and DLEC1 promoters altered by macroH2A1. Collectively, our findings in human and mice models reveal novel epigenetic anti-HCC effects of guadecitabine, which might be effective specifically in advanced states of the disease.  相似文献   

11.
Hepatocellular carcinoma (HCC) is a highly vascularized tumor with limited susceptibility to chemotherapy. Modern targeted therapies are aimed at specific properties of this neoplasm. Glycine is a simple non-essential amino acid with potential antiangiogenic effects. In this study, the amino acid’s effect on angiogenic signaling in an in vitro model of HCC was evaluated. HepG2 and Huh7 cells were treated with glycine-free DMEM supplemented with 0, 0.01, 0.1, 1.0, 2.0, 5.0 and 10 mM glycine. The direct effects of glycine on the viability of HCC cells were monitored using MTT assay. To detect angiogenic signaling, mRNA and protein levels of vascular endothelial growth factor (VEGF-A) were measured using RT-PCR and Western Blot assays. To determine whether or not glycine receptors (GlyR) played a significant role, the specific antagonist, strychnine, was used as a direct inhibitor. Western Blotting was performed to show the presence of GlyR. While there was no direct pro- or antiproliferative effect of either glycine or strychnine in both cell lines, glycine was shown to significantly decrease VEGF-A expression on mRNA and protein level up to 63 % in both cell lines. This effect was blunted by the presence of strychnine. GlyR was also identified in both cell lines. Glycine decreases GlyR-dependent, VEGF-A-mediated, angiogenic signaling in human HCC and thus might be a promising additive to chemotherapy treatment strategies for highly vascularized tumors.  相似文献   

12.
Esophageal cancer, including esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), has a poor prognosis and limited therapeutic options. Chimeric antigen receptor (CAR)-T cells represent a potential ESCC treatment. In this study, we examined CD276 expression in healthy and esophageal tumor tissues and explored the tumoricidal potential of CD276-targeting CAR-T cells in ESCC. CD276 was strongly and homogenously expressed in ESCC and EAC tumor lesions but mildly in healthy tissues, representing a good target for CAR-T cell therapy. We generated CD276-directed CAR-T cells with a humanized antigen-recognizing domain and CD28 or 4–1BB co-stimulation. CD276-specific CAR-T cells efficiently killed ESCC tumor cells in an antigen-dependent manner both in vitro and in vivo. In patient-derived xenograft models, CAR-T cells induced tumor regression and extended mouse survival. In addition, CAR-T cells generated from patient T cells demonstrated potent cytotoxicity against autologous tumor cells. Our study indicates that CD276 is an attractive target for ESCC therapy, and CD276-targeting CAR-T cells are worth testing in ESCC clinical trials.  相似文献   

13.
Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor α (PPARα), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.  相似文献   

14.
Tumor metastasis is usually a serious problem in tumor patients because of the lack of therapeutic approaches. A new compound, N-all-trans-retinoyl-L-proline (ATRP), has been developed and its metastasis inhibition activity has been studied. Low concentrations of ATRP have already been found to inhibit hepatocellular carcinoma cells (HCC) in a dose- and time-dependent manner by inducing the expression of p27(kip). We found that ATRP inhibited metastasis-associated behaviors in Hep3B cells, such as cell migration, invasion, collagen adhesion and gelatinase expression, more significantly than retinoic acid. Further, such inhibitory activities were observed in the regulation of cellular surface fucosylated epitope functions, such as binding of ulex europaeus lectin, expression of Lewis x, y and b, and activity of alpha1,3 fucosyltransferase. Hep3B cells pretreated with ATRP showed a significantly reduced incidence of experimental intrahepatic metastasis in nude mice. We conclude that ATRP is an alternative inhibitor and potential therapeutic agent for HCC metastasis with a different mechanism of action from ATRP.  相似文献   

15.
16.
Curative treatment of patients with hepatocellular carcinoma (HCC) is poor. There is an urgent need to develop more effective strategies for the chemoprevention of HCC. Chlorogenic acid (CGA), a type of polyphenol present in the diet, especially from coffee, has many biological activities. Patients with viral hepatitis who drank coffee everyday experienced a reduction in the incidence of HCC. In the present study, we evaluated the effects of CGA on HCC. CGA inhibited the proliferation of HepG2 cells in vitro and the progression of HepG2 xenograft in vivo. CGA induced the inactivation of ERK1/2 and suppressed the expression of MMP-2 and MMP-9 in HepG2 xenograft tissue. These data demonstrate that CGA can prevent the progression of HCC through multiple pathways. CGA appears to be an effective chemopreventive agent for hepatocellular carcinoma.  相似文献   

17.
In our in-depth analysis carried out by the Illumina Solexa massive parallel signature sequencing, microRNA-99a (miR-99a) was found to be the sixth abundant microRNA in the miRNome of normal human liver but was markedly down-regulated in hepatocellular carcinoma (HCC). Compelling evidence has suggested the important roles of microRNAs in HCC development. However, the biological function of miR-99a deregulation in HCC remains unknown. In this study, we found that miR-99a was remarkably decreased in HCC tissues and cell lines. Importantly, lower miR-99a expression in HCC tissues significantly correlated with shorter survival of HCC patients, and miR-99a was identified to be an independent predictor for the prognosis of HCC patients. Furthermore, restoration of miR-99a dramatically suppressed HCC cell growth in vitro by inducing the G(1) phase cell cycle arrest. Intratumoral injection of cholesterol-conjugated miR-99a mimics significantly inhibited tumor growth and reduced the α-fetoprotein level in HCC-bearing nude mice. Insulin-like growth factor 1 receptor (IGF-1R) and mammalian target of rapamycin (mTOR) were further characterized as the direct targets of miR-99a. Furthermore, protein levels of IGF-1R and mTOR were found to be inversely correlated with miR-99a expression in HCC tissues. miR-99a mimics inhibited IGF-1R and mTOR pathways and subsequently suppressed expression of cell cycle-related proteins, including cyclin D1 in HCC cells. Conclusively, miR-99a expression was frequently down-regulated in HCC tissues and correlates with the prognosis of HCC patients, thus proposing miR-99a as a prospective prognosis predictor of HCC. miR-99a suppresses HCC growth by inducing cell cycle arrest, suggesting miR-99a as potential tumor suppressor for HCC therapeutics.  相似文献   

18.
Epithelial-to-mesenchymal transition (EMT), important cellular process in metastasis of primary tumors, is characterized by loss of their cell polarity, disruption of cell-cell adhesion, and gain certain properties of mesenchymal phenotype that enable migration and invasion. Delphinidin is a member of anthocyanidin belong to flavonoid groups, known as having pharmacological and physiological effects including anti-tumorigenic, antioxidative, anti-inflammatory, and antiangiogenic effects. However, the effects of delphinidin on EMT is rarely investigated. Epidermal growth factor (EGF) is known as a crucial inducer of EMT in various cancer including hepatocellular carcinoma (HCC). To determine whether delphinidin inhibits EGF-induced EMT in HCC cells, antiproliferative effect of delphinidin on Huh7 and PLC/PRF/5 cells were measured by Cell Counting Kit-8 assay. As a result, delphinidin inhibited cell proliferation in a dose-dependent manner. Based on the result of proliferation, to measure the effects of delphinidin on EGF-induced EMT, we designated a proper concentration of delphinidin, which is not affected to cell proliferation. We found that delphinidin inhibits morphological changes from epithelial to mesenchymal phenotype by EGF. Moreover, delphinidin increased the messenger RNA and protein expression of E-cadherin and decreased those of Vimentin and Snail in EGF-induced HCC cells. Also, delphinidin prevented motility and invasiveness of EGF-induced HCC cells through suppressing activation of matrix metalloproteinase 2, EGF receptor (EGFR), AKT, and extracellular signal-regulated kinase (ERK). Taken together, our findings demonstrate that delphinidin inhibits EGF-induced EMT by inhibiting EGFR/AKT/ERK signaling pathway in HCC cells.  相似文献   

19.
20.
Ipilimumab, a cytotoxic T-lymphocyte antigen-4 (CTLA-4) binding agent, has proven to be an effective monotherapy for metastatic melanoma and has shown antitumor activity in trials when administered with other therapeutic agents. We hypothesized that the combination of ipilimumab with chemotherapeutic agents, such as ixabepilone, paclitaxel, etoposide, and gemcitabine, may produce therapeutic synergy based on distinct but complementary mechanisms of action for each drug and unique cellular targets. This concept was investigated using a mouse homolog of ipilimumab in preclinical murine tumor models, including SA1N fibrosarcoma, EMT-6 mammary carcinoma, M109 lung carcinoma, and CT-26 colon carcinoma. Results of CTLA-4 blockade in combination with one of various chemotherapeutic agents demonstrate that synergy occurs in settings where either agent alone was not effective in inducing tumor regression. Furthermore, when combined with CTLA-4 blockade, ixabepilone, etoposide, and gemcitabine elicited prolonged antitumor effects in some murine models with induction of a memory immune response. Future investigations are warranted to determine which specific chemo-immunotherapy combinations, if any, will produce synergistic antitumor effects in the clinical setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号