首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Constant progress in genetic engineering has given rise to a number of promising areas of research that facilitated the expansion of industrial biotechnology. The field of metabolic engineering, which utilizes genetic tools to manipulate microbial metabolism to enhance the production of compounds of interest, has had a particularly strong impact by providing new platforms for chemical production. Recent developments in synthetic biology promise to expand the metabolic engineering toolbox further by creating novel biological components for pathway design. The present review addresses some of the recent advances in synthetic biology and how these have the potential to affect metabolic engineering in the yeast Saccharomyces cerevisiae. While S. cerevisiae for years has been a robust industrial organism and the target of multiple metabolic engineering trials, its potential for synthetic biology has remained relatively unexplored and further research in this field could strongly contribute to industrial biotechnology. This review also addresses are general considerations for pathway design, ranging from individual components to regulatory systems, overall pathway considerations and whole-organism engineering, with an emphasis on potential contributions of synthetic biology to these areas. Some examples of applications for yeast synthetic biology and metabolic engineering are also discussed.  相似文献   

2.
合成生物学与代谢工程   总被引:5,自引:0,他引:5  
随着DNA重组技术的日趋成熟,代谢工程的理论和应用已经得到了迅速发展。合成生物学是近年来蓬勃发展的一门新兴学科,在许多领域都具有重要的应用。以下从改造细胞代谢的关键因子、代谢途径的调节和宿主细胞与代谢途径构建的关系等方面详细讨论了合成生物学的最新进展和合成生物学在代谢工程领域的应用。  相似文献   

3.
Quorum sensing (QS) is a ubiquitous cell–cell communication mechanism in microbes that coordinates population‐level cell behaviors, such as biofilm production, virulence, swarming motility, and bacterial persistence. Efforts to engineer QS systems to take part in metabolic network regulation represent a promising strategy for synthetic biology and pathway engineering. Recently, design, construction, and implementation of QS circuits for programmed control of bacterial phenotypes and metabolic pathways have gained much attention, but have not been reviewed recently. In this article, the architectural organizations and genetic contributions of the naturally occurring QS components to understand the mechanisms are summarized. Then, the most recent progress in application of QS toolkits to develop synthetic networks for novel cell behaviors creation and metabolic pathway engineering is highlighted. The current challenges in large‐scale application of these QS circuits in synthetic biology and metabolic engineering fields are discussed and future perspectives for further engineering efforts are provided.  相似文献   

4.
The rising potential for CRISPR–Cas-mediated genome editing has revolutionized our strategies in basic and practical bioengineering research. It provides a predictable and precise method for genome modification in a robust and reproducible fashion. Emergence of systems biotechnology and synthetic biology approaches coupled with CRISPR–Cas technology could change the future of cell factories to possess some new features which have not been found naturally. We have discussed the possibility and versatile potentials of CRISPR–Cas technology for metabolic engineering of a recombinant host for heterologous protein production. We describe the mechanisms involved in this metabolic engineering approach and present the diverse features of its application in biotechnology and protein production.  相似文献   

5.
Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering.  相似文献   

6.
The full potential of polyketide discovery has yet to be reached owing to a lack of suitable technologies and knowledge required to advance engineering of polyketide biosynthesis. Recent investigations on the discovery, enhancement, and non-natural use of these biosynthetic gene clusters via computational biology, metabolic engineering, structural biology, and enzymology-guided approaches have facilitated improved access to designer polyketides. Here, we discuss recent successes in gene cluster discovery, host strain engineering, precursor-directed biosynthesis, combinatorial biosynthesis, polyketide tailoring, and high-throughput synthetic biology, as well as challenges and outlooks for rapidly generating useful target polyketides.  相似文献   

7.
刘志凤  王勇 《生物工程学报》2021,37(5):1494-1509
20世纪90年代,Bailey及Stephanopoulos等提出了经典代谢工程的理念,旨在利用DNA重组技术对代谢网络进行改造,以达到细胞性能改善,目标产物增加的目的。自代谢工程诞生以来的30年,生命科学蓬勃发展,基因组学、系统生物学、合成生物学等新学科不断涌现,为代谢工程的发展注入了新的内涵与活力。经典代谢工程研究已进入到前所未有的系统代谢工程阶段。组学技术、基因组代谢模型、元件组装、回路设计、动态控制、基因组编辑等合成生物学工具与策略的应用,大大提升了复杂代谢的设计与合成能力;机器学习的介入以及进化工程与代谢工程的结合,为系统代谢工程的未来开辟了新的方向。文中对过去30年代谢工程的发展趋势作了梳理,介绍了代谢工程在发展中不断创新的理论与方法及其应用。  相似文献   

8.
在蛋白质工程、绿色生物制造以及合成生物学等研究领域中,对重要催化反应的重塑和合成路径的优化搭建,都依赖于对相关蛋白质结构与功能的深入了解。合成生物技术近年来的飞速发展对关键菌种及生物催化过程中的蛋白质的性能提出了更高要求,相关研究的关键是获得大批量、高纯度目的蛋白,并进行快速、准确的构效关系研究。中国科学院天津工业生物技术研究所建所10年来,在工业蛋白质领域进行了多年的积累,成功搭建成了蛋白质结构生物学平台;并在植物天然产物合成相关萜类合成酶、白色污染降解的聚对苯二甲酸乙二酯(polyethylene terephthalate, PET)塑料降解酶以及生物质转化利用相关酶等方面获得了一些进展,通过对这些蛋白进行结构和功能的研究,为许多研究工作提供了理论依据。蛋白质结构功能研究相关技术的不断发展,将加速合成生物学的学术和工业应用研究,推动我国生物制造领域的科技创新升级。  相似文献   

9.
Artemisinin, a natural compound from Artemisia annua, is highly effective in treating drug-resistant malaria. Because chemical synthesis of this natural terpenoid is not economically feasible, its only source remains as the native plant which produces only small quantities of it, resulting in a supply that is far short of demand. Extensive efforts have been invested in metabolic engineering for the biosynthesis of artemisinin precursors in microbes. However, the production of artemisinin itself has only been achieved in plants. Since, A. annua possesses only poorly developed genetic resources for traditional breeders, molecular breeding is the best alternative. In this review, we describe the efforts taken to enhance artemisinin production in A. annua via transgenesis and advocate metabolic engineering of the complete functional artemisinin metabolic pathway in heterologous plants. In both cases, we emphasize the need to apply state-of-the-art synthetic biology approaches to ensure successful biosynthesis of the drug.  相似文献   

10.
植物源二萜类天然产物结构复杂且功能多样,具有抗癌、抗炎和抗菌等多种药理活性,在药品、化妆品和食品添加剂等方面广泛应用。近年来,基于植物源二萜类化合物(diterpenoids)生物合成途径中功能基因的逐步揭示和合成生物技术的发展,科研人员采用代谢工程技术构建了多种二萜类化合物的微生物细胞工厂,且多个化合物达到克级产量。本文对植物源二萜类化合物微生物细胞工厂的构建情况进行综述,介绍并探讨植物源二萜类化合物微生物合成的研究进展和改造策略,为高产二萜类化合物细胞工厂构建和工业化生产提供参考。  相似文献   

11.
12.
The 'omics' era, with its identification of genetic and protein components, has combined with systems biology, which provided insights into network structures, to set the stage for synthetic biology, an emerging interdisciplinary life science that uses engineering principles. By capitalizing on an iterative design cycle that involves molecular and computational biology tools to assemble functional designer devices from a comprehensive catalogue of standardized biological components with predictable functions, synthetic biology has significantly advanced our understanding of complex control dynamics that program living systems. Such insights, collected over the past decade, are priming a variety of synthetic biology-inspired biomedical applications that have the potential to revolutionize drug discovery and production technologies, as well as treatment strategies for infectious diseases and metabolic disorders.  相似文献   

13.
Volatility of oil prices along with major concerns about climate change, oil supply security and depleting reserves have sparked renewed interest in the production of fuels from renewable resources. Recent advances in synthetic biology provide new tools for metabolic engineers to direct their strategies and construct optimal biocatalysts for the sustainable production of biofuels. Metabolic engineering and synthetic biology efforts entailing the engineering of native and de novo pathways for conversion of biomass constituents to short-chain alcohols and advanced biofuels are herewith reviewed. In the foreseeable future, formal integration of functional genomics and systems biology with synthetic biology and metabolic engineering will undoubtedly support the discovery, characterization, and engineering of new metabolic routes and more efficient microbial systems for the production of biofuels.  相似文献   

14.
自20世纪90年代初期诞生以来,代谢工程历经了30年的快速发展。作为代谢工程的首选底盘细胞之一,酿酒酵母细胞工厂已被广泛应用于大量大宗化学品和新型高附加值生物活性物质的生物制造,在能源、医药和环境等领域取得了巨大的突破。近年来,合成生物学、生物信息学以及机器学习等相关技术也极大地促进了代谢工程的技术发展和应用。文中回顾了近30年来酿酒酵母代谢工程重要的技术发展,首先总结了经典代谢工程的常用方法和策略,以及在此基础上发展而来的系统代谢工程和合成生物学驱动的代谢工程技术。最后结合最新技术发展趋势,展望了未来酿酒酵母代谢工程发展的新方向。  相似文献   

15.
蔡真  李寅 《生物工程学报》2011,27(7):971-975
以生物催化和生物转化为核心的工业生物技术是实现社会和经济可持续发展的有效手段。本期专刊分别从基因工程、代谢工程与合成生物学、生理工程、发酵工程与生化工程、生物催化与生物转化、生物技术与方法等方面,介绍了我国在工业生物技术领域的最新研究进展。  相似文献   

16.
The microbial production of biofuels is a promising avenue for the development of viable processes for the generation of fuels from sustainable resources. In order to become cost and energy effective, these processes must utilize organisms that can be optimized to efficiently produce candidate fuels from a variety of feedstocks. Escherichia coli has become a promising host organism for the microbial production of biofuels in part due to the ease at which this organism can be manipulated. Advancements in metabolic engineering and synthetic biology have led to the ability to efficiently engineer E. coli as a biocatalyst for the production of a wide variety of potential biofuels from several biomass constituents. This review focuses on recent efforts devoted to engineering E. coli for the production of biofuels, with emphasis on the key aspects of both the utilization of a variety of substrates as well as the synthesis of several promising biofuels. Strategies for the efficient utilization of carbohydrates, carbohydrate mixtures, and noncarbohydrate carbon sources will be discussed along with engineering efforts for the exploitation of both fermentative and nonfermentative pathways for the production of candidate biofuels such as alcohols and higher carbon biofuels derived from fatty acid and isoprenoid pathways. Continued advancements in metabolic engineering and synthetic biology will help improve not only the titers, yields, and productivities of biofuels discussed herein, but also increase the potential range of compounds that can be produced.  相似文献   

17.
Being the green gold of the future, microalgae and cyanobacteria have recently attracted considerable interest worldwide, for their metabolites such as lipids, protein, pigments, and bioactive compounds have immense potential for sustainable energy and pharmaceutical production capabilities. In the last decades, the efforts attended to enhance the usage of microalgae and cyanobacteria by genetic manipulation, synthetic and metabolic engineering. However, the development of photoautotrophic cell factories have rarely compared to the heterotrophic counterparts due to limited tools, bioinformatics, and multi‐omics database. Therefore, recent advances of their genome editing techniques by clustered regularly interspaced short palindromic repeats (CRISPR) technology, and potential applications of their metabolic engineering and regulation approaches are examined in this review. Moreover, the contemporary achievements of synthetic biology approaches of microalgae and cyanobacteria in carbon fixation and sequestration, lipid and triacylglycerol (TAG), and sustainable production of high value‐added chemicals, such as carotenoids and docosahexaenoic acid (DHA), have been also discussed. From recent genomic study to trends in metabolic regulation of microalgae and cyanobacteria and a comprehensive assessment of the current challenges and opportunities for microalgae and cyanobacteria is also conducted.  相似文献   

18.
In the field of synthetic biology, recent genetic engineering efforts have enabled the construction of novel genetic circuits with diverse functionalities and unique activation mechanisms. Because of these advances, artificial genetic networks are becoming increasingly complex, and are demonstrating more robust behaviors with reduced crosstalk between defined modules. These properties have allowed for the identification of a growing set of design principles that govern genetic networks, and led to an increased number of applications for genetic circuits in the fields of metabolic engineering and biomedical engineering. Such progress indicates that synthetic biology is rapidly evolving into an integrated engineering practice that uses rational and combinatorial design of synthetic gene networks to solve complex problems in biology, medicine, and human health.  相似文献   

19.
透明质酸(hyaluronic acid,HA)是广泛存在于生物体内的功能性糖胺高分子聚合物,在日化、医疗和食品领域应用前景广阔.随着基因工程与代谢工程等合成生物学技术的发展,人们对HA的生物合成过程和机理解析越发深入的同时,也伴随一些新的挑战来临.该综述从分子生物学角度总结了HA的关键合成酶基因及合成途径,对不同来源...  相似文献   

20.
A systems-level approach for metabolic engineering of yeast cell factories   总被引:1,自引:0,他引:1  
The generation of novel yeast cell factories for production of high-value industrial biotechnological products relies on three metabolic engineering principles: design, construction, and analysis. In the last two decades, strong efforts have been put on developing faster and more efficient strategies and/or technologies for each one of these principles. For design and construction, three major strategies are described in this review: (1) rational metabolic engineering; (2) inverse metabolic engineering; and (3) evolutionary strategies. Independent of the selected strategy, the process of designing yeast strains involves five decision points: (1) choice of product, (2) choice of chassis, (3) identification of target genes, (4) regulating the expression level of target genes, and (5) network balancing of the target genes. At the construction level, several molecular biology tools have been developed through the concept of synthetic biology and applied for the generation of novel, engineered yeast strains. For comprehensive and quantitative analysis of constructed strains, systems biology tools are commonly used and using a multi-omics approach. Key information about the biological system can be revealed, for example, identification of genetic regulatory mechanisms and competitive pathways, thereby assisting the in silico design of metabolic engineering strategies for improving strain performance. Examples on how systems and synthetic biology brought yeast metabolic engineering closer to industrial biotechnology are described in this review, and these examples should demonstrate the potential of a systems-level approach for fast and efficient generation of yeast cell factories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号