首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang  Jing  Li  Jiazhi  Wang  Jiuyu  Sheng  Gang  Wang  Min  Zhao  Hongtu  Yang  Yanhua  Wang  Yanli 《中国科学:生命科学英文版》2020,63(4):516-528
Cas1 is a key component of the CRISPR adaptation complex, which captures and integrates foreign DNA into the CRISPR array,resulting in the generation of new spacers. We have determined crystal structures of Thermus thermophilus Cas1 involved in new spacer acquisition both in complex with branched DNA and in the free state. Cas1 forms an asymmetric dimer without DNA.Conversely, two asymmetrical dimers bound to two branched DNAs result in the formation of a DNA-mediated tetramer, dimer of structurally asymmetrical dimers, in which the two subunits markedly present different conformations. In the DNA binding complex, the N-terminal domain adopts different orientations with respect to the C-terminal domain in the two monomers that form the dimer. Substrate binding triggers a conformational change in the loop 164–177 segment. This loop is also involved in the 3′ fork arm and 5′ fork arm strand recognition in monomer A and B, respectively. This study provides important insights into the molecular mechanism of new spacer adaptation.  相似文献   

2.
Crystal structure of the Msx-1 homeodomain/DNA complex   总被引:3,自引:0,他引:3  
Hovde S  Abate-Shen C  Geiger JH 《Biochemistry》2001,40(40):12013-12021
The Msx-1 homeodomain protein plays a crucial role in craniofacial, limb, and nervous system development. Homeodomain DNA-binding domains are comprised of 60 amino acids that show a high degree of evolutionary conservation. We have determined the structure of the Msx-1 homeodomain complexed to DNA at 2.2 A resolution. The structure has an unusually well-ordered N-terminal arm with a unique trajectory across the minor groove of the DNA. DNA specificity conferred by bases flanking the core TAAT sequence is explained by well ordered water-mediated interactions at Q50. Most interactions seen at the TAAT sequence are typical of the interactions seen in other homeodomain structures. Comparison of the Msx-1-HD structure to all other high resolution HD-DNA complex structures indicate a remarkably well-conserved sphere of hydration between the DNA and protein in these complexes.  相似文献   

3.
4.
The bacterial mismatch-specific uracil-DNA glycosylase (MUG) and eukaryotic thymine-DNA glycosylase (TDG) enzymes form a homologous family of DNA glycosylases that initiate base-excision repair of G:U/T mismatches. Despite low sequence homology, the MUG/TDG enzymes are structurally related to the uracil-DNA glycosylase enzymes, but have a very different mechanism for substrate recognition. We have now determined the crystal structure of the Escherichia coli MUG enzyme complexed with an oligonucleotide containing a non-hydrolysable deoxyuridine analogue mismatched with guanine, providing the first structure of an intact substrate-nucleotide productively bound to a hydrolytic DNA glycosylase. The structure of this complex explains the preference for G:U over G:T mispairs, and reveals an essentially non-specific pyrimidine-binding pocket that allows MUG/TDG enzymes to excise the alkylated base, 3, N(4)-ethenocytosine. Together with structures for the free enzyme and for an abasic-DNA product complex, the MUG-substrate analogue complex reveals the conformational changes accompanying the catalytic cycle of substrate binding, base excision and product release.  相似文献   

5.
6.
7.
Binding of proteins to DNA is usually considered 1D with one protein bound to one DNA molecule. In principle, proteins with multiple DNA binding domains could also bind to and thereby cross-link different DNA molecules. We have investigated this possibility using high-mobility group A1 (HMGA1) proteins, which are architectural elements of chromatin and are involved in the regulation of multiple DNA-dependent processes. Using direct stochastic optical reconstruction microscopy (dSTORM), we could show that overexpression of HMGA1a-eGFP in Cos-7 cells leads to chromatin aggregation. To investigate if HMGA1a is directly responsible for this chromatin compaction we developed a DNA cross-linking assay. We were able to show for the first time that HMGA1a can cross-link DNA directly. Detailed analysis using point mutated proteins revealed a novel DNA cross-linking domain. Electron microscopy indicates that HMGA1 proteins are able to create DNA loops and supercoils in linearized DNA confirming the cross-linking ability of HMGA1a. This capacity has profound implications for the spatial organization of DNA in the cell nucleus and suggests cross-linking activities for additional nuclear proteins.  相似文献   

8.
Heme oxygenase oxidatively cleaves heme to biliverdin, leading to the release of iron and CO through a process in which the heme participates both as a cofactor and as a substrate. Here we report the crystal structure of the product, iron-free biliverdin, in a complex with human HO-1 at 2.19 A. Structural comparisons of the human biliverdin-HO-1 structure with its heme complex and the recently published rat HO-1 structure in a complex with the biliverdin-iron chelate [Sugishima, M., Sakamoto, H., Higashimoto, Y., Noguchi, M., and Fukuyama, K. (2003) J. Biol. Chem. 278, 32352-32358] show two major differences. First, in the absence of an Fe-His bond and solvent structure in the active site, the distal and proximal helices relax and adopt an "open" conformation which most likely encourages biliverdin release. Second, iron-free biliverdin occupies a different position and orientation relative to heme and the biliverdin-iron complex. Biliverdin adopts a more linear conformation and moves from the heme site to an internal cavity. These structural results provide insight into the rate-limiting step in HO-1 catalysis, which is product, biliverdin, release.  相似文献   

9.
10.
Crystal structure of auxin-binding protein 1 in complex with auxin   总被引:9,自引:0,他引:9  
The structure of auxin-binding protein 1 (ABP1) from maize has been determined at 1.9 A resolution, revealing its auxin-binding site. The structure confirms that ABP1 belongs to the ancient and functionally diverse germin/seed storage 7S protein superfamily. The binding pocket of ABP1 is predominantly hydrophobic with a metal ion deep inside the pocket coordinated by three histidines and a glutamate. Auxin binds within this pocket, with its carboxylate binding the zinc and its aromatic ring binding hydrophobic residues including Trp151. There is a single disulfide between Cys2 and Cys155. No conformational rearrangement of ABP1 was observed when auxin bound to the protein in the crystal, but examination of the structure reveals a possible mechanism of signal transduction.  相似文献   

11.
Endonuclease G (EndoG) is an evolutionarily conserved mitochondrial protein in eukaryotes that digests nucleus chromosomal DNA during apoptosis and paternal mitochondrial DNA during embryogenesis. Under oxidative stress, homodimeric EndoG becomes oxidized and converts to monomers with diminished nuclease activity. However, it remains unclear why EndoG has to function as a homodimer in DNA degradation. Here, we report the crystal structure of the Caenorhabditis elegans EndoG homologue, CPS-6, in complex with single-stranded DNA at a resolution of 2.3 Å. Two separate DNA strands are bound at the ββα-metal motifs in the homodimer with their nucleobases pointing away from the enzyme, explaining why CPS-6 degrades DNA without sequence specificity. Two obligatory monomeric CPS-6 mutants (P207E and K131D/F132N) were constructed, and they degrade DNA with diminished activity due to poorer DNA-binding affinity as compared to wild-type CPS-6. Moreover, the P207E mutant exhibits predominantly 3′-to-5′ exonuclease activity, indicating a possible endonuclease to exonuclease activity change. Thus, the dimer conformation of CPS-6 is essential for maintaining its optimal DNA-binding and endonuclease activity. Compared to other non-specific endonucleases, which are usually monomeric enzymes, EndoG is a unique dimeric endonuclease, whose activity hence can be modulated by oxidation to induce conformational changes.  相似文献   

12.
13.
Chromatin remodelers are ATP-dependent machines that dynamically alter the chromatin packaging of eukaryotic genomes by assembling, sliding, and displacing nucleosomes. The Chd1 chromatin remodeler possesses a C-terminal DNA-binding domain that is required for efficient nucleosome sliding and believed to be essential for sensing the length of DNA flanking the nucleosome core. The structure of the Chd1 DNA-binding domain was recently shown to consist of a SANT and SLIDE domain, analogous to the DNA-binding domain of the ISWI family, yet the details of how Chd1 recognized DNA were not known. Here we present the crystal structure of the Saccharomyces cerevisiae Chd1 DNA-binding domain in complex with a DNA duplex. The bound DNA duplex is straight, consistent with the preference exhibited by the Chd1 DNA-binding domain for extranucleosomal DNA. Comparison of this structure with the recently solved ISW1a DNA-binding domain bound to DNA reveals that DNA lays across each protein at a distinct angle, yet contacts similar surfaces on the SANT and SLIDE domains. In contrast to the minor groove binding seen for Isw1 and predicted for Chd1, the SLIDE domain of the Chd1 DNA-binding domain contacts the DNA major groove. The majority of direct contacts with the phosphate backbone occur only on one DNA strand, suggesting that Chd1 may not strongly discriminate between major and minor grooves.  相似文献   

14.
15.
Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA   总被引:5,自引:0,他引:5  
Wilson JJ  Kovall RA 《Cell》2006,124(5):985-996
  相似文献   

16.
17.
18.
Several gamma-herpesviruses encode proteins related to the mammalian cyclins, regulatory subunits of cyclin-dependent kinases (cdks) essential for cell cycle progression. We report a 2.5 A crystal structure of a full-length oncogenic viral cyclin from gamma-herpesvirus 68 complexed with cdk2. The viral cyclin binds cdk2 with an orientation different from cyclin A and makes several novel interactions at the interface, yet it activates cdk2 by triggering conformational changes similar to cyclin A. Sequences within the viral cyclin N-terminus lock part of the cdk2 T-loop within the core of the complex. These sequences and others are conserved amongst the viral and cellular D-type cyclins, suggesting that this structure has wider implications for other cyclin-cdk complexes. The observed resistance of this viral cyclin-cdk complex to inhibition by the p27(KIP:) cdk inhibitor is explained by sequence and conformational variation in the cyclin rendering the p27(KIP:)-binding site on the cyclin subunit non-functional.  相似文献   

19.
Crystal structure of a papain-E-64 complex   总被引:1,自引:0,他引:1  
E-64 [1-[N-[(L-3-trans-carboxyoxirane-2-carbonyl)-L-leucyl] amino]-4-guanidinobutane] is an irreversible inhibitor of many cysteine proteases. A papain-E-64 complex was crystallized at pH 6.3 by using the hanging drop method. Three different crystal forms grew in 3-7 days; the form chosen for structure analysis has space group P212121, with a = 42.91(4) A, b = 102.02(6) A, c = 49.73(2) A, and Z = 4. Diffraction data were measured to 2.4-A resolution, giving 9367 unique reflections. The papain structure was solved by use of the molecular replacement method, and then the inhibitor was located from a difference electron density map and fitted with the aid of a PS330 computer graphics system. The structure of the complex was refined to R = 23.3%. Our analysis shows that a covalent link is formed between the sulfur of the active-site cysteine 25 and the C-2 atom of the inhibitor. Contrary to earlier predictions, the E-64 inhibitor clearly interacts with the S subsites on the enzyme rather than the S' subsites, and papain's histidine 159 imidazole group plays a binding rather than a catalytic role in the inactivation process.  相似文献   

20.
Crystal structure of a lysozyme-tetrasaccharide lactone complex   总被引:6,自引:0,他引:6  
The binding of a proposed transition-state analogue, the δ-lactone derived from tetra-N-acetylchitotetraose, to lysozyme in the crystal at pH 2.6 has been studied by X-ray diffraction techniques to a resolution of 2.5 Å. The tetrasaccharide lactone is bound in sites A, B, C, D with sugar residues located in sites A, B and C in similar positions to those observed previously in the complex with tri-N-acetylchitotriose. Analysis of the electron density map for site D, by direct model-building and with a computer model-building programme, indicates that the δ-lactone ring is in a conformation close to a sofa or a boat which brings the hydroxymethyl group C(6)O(6) axial. These studies provide support for the role of strain in the proposed mechanism of lysozyme catalysis. The orientation of the lactone group in site D is slightly different from that originally derived by hypothetical model-building.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号