首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Female cancer patients who seek fertility preservation but cannot undergo ovarian stimulation and embryo preservation may consider 1) retrieval of immature oocytes followed by in vitro maturation (IVM) or 2) ovarian tissue cryopreservation followed by transplantation or in vitro follicle culture. Conventional IVM is carried out during the follicular phase of menstrual cycle. There is limited evidence demonstrating that immature oocyte retrieved during the luteal phase can mature in vitro and be fertilized to produce viable embryos. While in vitro follicle culture is successful in rodents, its application in nonhuman primates has made limited progress. The objective of this study was to investigate the competence of immature luteal-phase oocytes from baboon and to determine the effect of follicle-stimulating hormone (FSH) on baboon preantral follicle culture and oocyte maturation in vitro. Oocytes from small antral follicle cumulus-oocyte complexes (COCs) with multiple cumulus layers (42%) were more likely to resume meiosis and progress to metaphase II (MII) than oocytes with a single layer of cumulus cells or less (23% vs. 3%, respectively). Twenty-four percent of mature oocytes were successfully fertilized by intracytoplasmic sperm injection, and 25% of these developed to morula-stage embryos. Preantral follicles were encapsulated in fibrin-alginate-matrigel matrices and cultured to small antral stage in an FSH-independent manner. FSH negatively impacted follicle health by disrupting the integrity of oocyte and cumulus cells contact. Follicles grown in the absence of FSH produced MII oocytes with normal spindle structure. In conclusion, baboon luteal-phase COCs and oocytes from cultured preantral follicles can be matured in vitro. Oocyte meiotic competence correlated positively with the number of cumulus cell layers. This study clarifies the parameters of the follicle culture system in nonhuman primates and provides foundational data for future clinical development as a fertility preservation option for women with cancer.  相似文献   

2.
AIM: To determine whether maturation and subsequent blastocyst development of in vitro matured oocytes can be improved by in vivo follicle stimulating hormone (FSH) or human chorionic gonadotrophin (hCG) priming, using a mouse model. EXPERIMENTAL DESIGN: Five groups of oocytes were used: in vivo control, in vitro matured (IVM) control, IVM after 24 h in vivo priming with FSH, IVM after 48 h in vivo priming with FSH and IVM after 16 h in vivo priming with hCG. In vitro fertilization (IVF) was performed on all groups.Oocyte maturation, fertilization, blastocyst development rates and blastocyst cell numbers were assessed for all groups. RESULTS: Significant improvement in oocyte maturation was observed in the two FSH priming groups compared with the IVM control group (P<0.005 and P<0.001, respectively). There were no significant differences in fertilization between all five groups. Blastocyst development was significantly higher in the in vivo control compared to the IVM groups (P<0.001). No significant differences were observed in blastocyst cell numbers among all five groups. CONCLUSIONS: While FSH priming improves the maturation rate of IVM oocytes, FSH or hCG priming does not improve development to the blastocyst stage.  相似文献   

3.
This study deals with the effect of plasminogen/plasmin on the in vitro maturation (IVM) of bovine cumulus‐oocyte complexes (COCs). Exogenous plasminogen activator streptokinase (SK) added to the IVM medium revealed similar values of cumulus expansion and oocyte nuclear maturation compared to controls (standard IVM medium). However, a decrease in both determinations was observed in COCs matured with the supplementation of ?‐aminocaproic acid (?‐ACA), a specific plasmin inhibitor. After in vitro fertilization, no differences were observed in either cleavage or blastocyst rates between SK and control groups; however, ε‐ACA treatment caused a decrease in both developmental rates. Zona pellucida (ZP) digestion time decreased in the SK group while it increased in the ε‐ACA group. Raman microspectroscopy revealed an increase in the intensity of the band corresponding to the glycerol group of sialic acid in the ZP of oocytes matured with SK, whereas ZP spectra of oocytes treated with ?‐ACA presented similarities with immature oocytes. The results indicate that although treatment with SK did not alter oocyte developmental competence, it induced modifications in the ZP of oocytes that could modify the folding of glycoproteins. Plasmin inhibition impairs oocyte maturation and has an impact on embryo development, thus evidencing the importance of this protease during IVM.  相似文献   

4.
Somatic cell nuclear transfer (SCNT) is not successful so far in non-human primates. The objective of this study was to investigate the effects of stimulation cycles (first and repeat) on oocyte retrieval and in vitro maturation (IVM) and to evaluate the effects of stimulation cycles and donor cell type (cumulus and fetal skin fibroblasts) on efficiency of SCNT with transported IVM oocytes. In this study, 369 immature oocytes were collected laparoscopically at 24 h following human chorionic gonadotrophin (hCG) treatment from 12 cynomolgus macaque (Macaca fascicularis) in 24 stimulation cycles, and shipped in pre-equilibrated IVM medium for a 5 h journey, placed in a dry portable incubator (37 degrees C) without CO(2) supplement. A total of 70.6% (247/350) of immature oocytes reached metaphase II (MII) stage at 36 h after hCG administration, MII spindle could be seen clearly in 80.6% (104/129) of matured IVM oocytes under polarized microscopy. A total of 50.0% (37/74) of reconstructive SCNT embryos cleaved after activation; after cleavage, 37.8% (14/37) developed to the 8-cell stage and 8.1% (3/37) developed to morula, but unfortunately none developed to the blastocyst stage. Many more oocytes could be retrieved per cycle from monkeys in the first cycle than in repeated cycles (19.1 vs. 11.7, p < 0.05). There were no significant differences in the maturation rate (70.0 vs. 71.4%, p > 0.05) and MII spindle rate under polarized microscopy (76.4 vs. 86.0%, p > 0.05) between the first and repeat cycles. There were also no significant differences in the cleavage rate, and the 4-cell, 8-cell and morula development rate of SCNT embryos between the first and repeat cycles. When fibroblast cells and cumulus cells were used as the donor cells for SCNT, first cleavage rate was not significantly different, but 4-cell (50.0 vs. 88.9%, p < 0.05) and 8-cell (0 vs. 51.9%, p < 0.01) development rate were significantly lower for the former. In conclusion, the number of stimulation cycles has a significant effect on oocyte retrieval, but has no effect on maturation and SCNT embryo development; however, different donor cell types (cumulus and fibroblast) resulted in different developmental potentials of SCNT embryos.  相似文献   

5.

Objective

To evaluate in vitro maturation (IVM) in sub-fertile women with polycystic ovarian syndrome (PCOS) undergoing in vitro fertilisation (IVF), by comparing outcomes with a control group of non-PCOS.

Study design

A search strategy was developed for PubMed and studies reporting rates of the following outcomes (live birth; clinical pregnancy; implantation; cycle cancellation; oocyte maturation; oocyte fertilization; miscarriage) between patients with PCOS, PCO and controls undergoing IVM were deemed eligible. The review was conducted in accordance to the PRISMA guidelines and included studies quality was assessed through the Newcastle-Ottawa Quality scale. ORs with their corresponding 95% CIs were calculated for the main analysis and subgroup analyses were performed for PCOS cases vs. controls and PCOS vs. PCO cases. Alternative analyses were performed for live birth and clinical pregnancy, based on cycles and on women. Subgroup analyses for FSH stimulation, hCG priming and type of procedure (IVF/ICSI) were undertaken for all meta-analyses encompassing at least four study arms. Random effects models were used to calculate pooled effect estimates.

Results

Eleven studies were identified. A total of 268 PCOS patients (328 cycles), 100 PCO patients (110 cycles) and 440 controls (480 cycles) were included in the meta-analysis. A borderline trend towards higher birth rates among PCOS patients emerged (pooled OR = 1.74, 95%CI: 0.99–3.04) mainly reflected at the subgroup analysis vs. controls. Clinical pregnancy (pooled OR = 2.37, 95%CI: 1.53–3.68) and implantation rates (pooled OR = 1.73, 95%CI: 1.06–2.81) were higher, while cancellation rates lower (pooled OR = 0.18, 95%CI: 0.06-0.47) among PCOS vs. non-PCOS subjects; maturation and miscarriage rates did not differ between groups, while a borderline trend towards lower fertilization rates among PCOS patients was observed.

Conclusion

The present meta-analysis provides preliminary evidence on the effectiveness of IVM as a treatment option when offered in sub-fertile PCOS women, as the latter present at least as high outcome rates as those in non-PCOS.  相似文献   

6.
Dey SR  Deb GK  Ha AN  Lee JI  Bang JI  Lee KL  Kong IK 《Theriogenology》2012,77(6):1064-1077
The present study examined the effect of coculturing cumulus oocyte complexes (COCs) and denuded oocytes (DOs) during in vitro maturation (IVM) on nuclear and cytoplasmic maturation, zona pellucida (ZP) hardening, the pattern of fertilization and glutathione peroxidase 1 (GPX1) gene expression in the oocyte. Furthermore, the rate of embryonic development and the quality of blastocysts were examined for both COCs and DOs. Three IVM conditions were studied: 1) the coculture of 12 COCs and 60 DOs, 2) COC control with 12 COCs, and 3) DO control with 60 DOs. The IVM was performed in a 120-μl droplet of TCM199-based IVM medium. Following IVM, in vitro fertilization (IVF) and in vitro culture (IVC) were conducted separately for the COCs and DOs (DO coculture) from the IVM coculture group. Coculturing COCs and DOs increased the percentage of oocytes reaching the blastocyst stage and the total number of cells per blastocyst in both the COC coculture (44.4 ± 8.6 vs 26.7 ± 9.7%, P < 0.01, and 137.9 ± 24.9 vs 121.7 ± 21.1, P < 0.05) and the DO coculture (20.5 ± 5.0 vs 11.1 ± 2.5%, P < 0.01, and 121.9 ± 27.5 vs 112.3 ± 33.2, P < 0.05) compared to their respective control groups. The synergistic effects of coculturing were detected as increased nuclear and cytoplasmic maturation, the prevention of ZP hardening, increased monospermic fertilization and increased expression of GPX1 in the oocytes in response to endogenous oocyte-secreted factors. In conclusion, coculturing COCs and DOs may be an effective culture system for both intact COCs and immature DOs.  相似文献   

7.
8.
The aim of this study was to assess the presence and distribution of apoptosis in porcine cumulus‐oocyte complexes (COCs) and its relations with COC morphology and developmental competence. The COCs were obtained from slaughterhouse ovaries, classified into A1 (top category), A2, B1, B2, C, and D based on their morphology. A1, A2, and B1 were matured and fertilized in vitro, and blastocyst rate was compared among them. Before and after in vitro maturation (IVM), annexin‐V staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were performed to assess early and late apoptosis, respectively. There was a significant increase in both annexin‐V (+) oocytes and TUNEL (+) cumulus cells as morphology further deteriorated. There were no statistical differences regarding annexin‐V (+) oocytes within immature and post‐IVM COCs, but TUNEL (+) oocytes were only observed in post‐IVM COCs. Early and late apoptosis was detected in cumulus cells of all categories of immature and post‐IVM COCs. However, the difference was only significant for annexin‐V (+). There were no significant differences in embryo development. Therefore, apoptosis increases as the morphological features of the immature COCs decrease. In conclusion, the selection of COCs from Categories A1, A2, and B1 may be used as a selection criterion for in vitro development.  相似文献   

9.
Full-grown oocytes of Atlantic croaker are insensitive to maturation-inducing steroid (MIS) unless they are primed with gonadotropin (GtH). The objective of this study was to examine the mechanism of GtH-induced maturational competence in croaker oocytes. Specifically, we determined the in vitro secretion of steroids by intact ovarian follicles of unprimed or hCG-primed fish, the direct effects of steroids on maturational competence, and the effects of steroid (cyanoketone), protein (cycloheximide), and RNA (actinomycin D) synthesis inhibitors on hCG-induced maturational competence and steroidogenesis in vitro. The steroid content of the incubation medium after hCG treatment was measured by RIA. The effects of hCG or exogenous steroid treatment on maturational competence were determined by recording the incidence of germinal vesicle breakdown (GVBD) after MIS-induced GVBD in a standard bioassay. Our major findings were: (1) induction of maturational competence occurred after exposure of ovarian follicles to hCG either in vivo or in vitro; (2) MIS secretion was detected in follicles of hCG-primed fish but not unprimed fish, and no MIS secretion was observed during hCG induction of maturational competence in vitro; (3) treatment with cyanoketone blocked the hCG-dependent secretion of testosterone and estradiol but not the development of maturational competence; (4) treatment with MIS or various other exogenous steroids in the absence of hCG did not induce maturational competence; and (5) hCG-induced maturational competence was inhibited by cycloheximide and actinomycin D. Therefore, the mechanisms of GtH induction of oocyte maturation in Atlantic croaker can be described in two distinct stages: a delta-4 steroid-(including MIS) and estrogen-independent priming stage followed by a MIS-mediated GVBD stage. The priming stage may involve mechanisms requiring RNA as well as protein synthesis.  相似文献   

10.
A reliable ovarian stimulation protocol for marmosets is needed to enhance their use as a model for studying human and non-human primate oocyte biology. In this species, a standard dose of hCG did not effectively induce oocyte maturation in vivo. The objectives of this study were to characterize ovarian response to an FSH priming regimen in marmosets, given without or with a high dose of hCG, and to determine the meiotic and developmental competence of the oocytes isolated. Ovaries were removed from synchronized marmosets treated with FSH alone (50 IU/d for 6 d) or the same FSH treatment combined with a single injection of hCG (500 IU). Cumulus-oocyte complexes (COCs) were isolated from large (>1.5mm) and small (0.7-1.5mm) antral follicles. In vivo-matured oocytes were subsequently activated parthenogenetically or fertilized in vitro. Immature oocytes were subjected to in vitro maturation and then activated parthenogenetically. Treatment with FSH and hCG combined increased the number of expanded COCs from large antral follicles compared with FSH alone (23.5 +/- 9.3 versus 6.4 +/- 2.7, mean +/- S.E.M.). Approximately 90% of oocytes surrounded by expanded cumulus cells at the time of isolation were meiotically mature. A blastocyst formation rate of 47% was achieved following fertilization of in vivo-matured oocytes, whereas parthenogenetic activation failed to induce development to the blastocyst stage. The capacity of oocytes to complete meiosis in vitro and cleave was positively correlated with follicle diameter. A dramatic effect of follicle size on spindle formation was observed in oocytes that failed to complete meiosis in vitro. Using the combined FSH and hCG regimen described in this study, large numbers of in vivo matured marmoset oocytes could be reliably collected in a single cycle, making the marmoset a valuable model for studying oocyte maturation in human and non-human primates.  相似文献   

11.
Cumulus oophorus cells have been implicated in the regulation of female gamete development, meiotic maturation, and oocyte-sperm interaction. Nevertheless, the specific role of cumulus cells (CCs) during the final stages of oocyte maturation and fertilization processes still remains unclear. Several studies have been conducted in order to clarify the role of follicular cells using culture systems where denuded oocytes (DOs) were co-cultured with isolated CCs, or in the presence of conditioned medium. However, those attempts were ineffective and the initial oocyte competence to become a blastocyst after fertilization was only partially restored. Aim of the present study was to analyze the effect of the interactions between somatic cells and the female gamete on denuded oocyte developmental capability using a system of culture where CCs were present as dispersed CCs or as intact cumulus-oocyte complexes (COCs) in co-culture with oocytes freed of CC investment immediately after isolation from the ovary. Moreover, we analyzed the specific role of cyclic adenosine 3'-5' monophosphate (cAMP) and glutathione (GSH) during FSH-stimulated maturation of denuded oocyte co-cultured with intact COCs. Our data confirm that denuded oocyte has a scarce developmental capability, and the presence of dispersed CCs during in vitro maturation (IVM) does not improve their developmental competence. On the contrary, the co-presence of intact COCs during denuded oocyte IVM partially restores their developmental capability. The absence of CCs investment causes a drop of cAMP content in DOs at the beginning of IVM and the addition of a cAMP analog in the culture medium does not restore the initial oocyte developmental competence. The relative GSH content of denuded oocyte matured in presence of intact COCs is consistent with the partial recovery of their developmental capability. However, the complete restoration of a full embryonic developmental potential is achieved only when DOs are co-cultured with intact COCs during both IVM and in vitro fertilization (IVF). Our results suggest that the direct interaction between oocyte and CCs is not essential during IVM and IVF of denuded oocyte. We hypothesize that putative diffusible factor(s), produced by CCs and/or by the crosstalk between oocyte and CCs in the intact complex, could play a key role in the acquisition of developmental competence of the denuded female gamete.  相似文献   

12.
The objective of this study was to investigate the effects of oocyte selection using brilliant cresyl blue (BCB) and culture density during individual in vitro maturation (IVM) on porcine oocyte maturity and subsequent embryo development using a chemically defined medium. Cumulus-oocyte complexes (COCs) were classified as BCB-positive or BCB-negative after exposure to a BCB solution for 90 min. The classified COCs were matured in a group (15 COCs per 100-μL droplet) or individually (1 COC per 1-, 2.5-, 5-, or 10-μL droplet). Meiotic competence, intraoocyte glutathione concentration, and developmental competence after intracytoplasmic sperm injection were monitored. The BCB selected oocytes competent for nuclear and cytoplasmic maturation. Furthermore, meiotic competence for oocytes matured individually in a 5-μL droplet was superior (P < 0.05) to that of oocytes matured in a 1-μL droplet. Also, the culture density in a 5-μL droplet during IVM resulted in a higher (P < 0.05) rate of cleaved embryos than that in a 1-μL droplet and produced a similar rate of blastocysts compared with that of a group culture system. Conversely, BCB selection did not improve cleavage and blastocyst formation. In conclusion, it was possible to predict porcine oocytes competent for maturation using oocyte selection with BCB. Moreover, a 5-μL droplet during the individual IVM culture was most suitable for oocyte maturation and subsequent embryo development, although every culture density used in this study supported development up to the blastocyst stage.  相似文献   

13.
Information gained from most human studies indicate a negative correlation between the apoptotic index (AI) in cumulus cells (CC) and the quality of the corresponding oocytes. However, results obtained in other species are not so consistent. The rate of apoptosis-free COCs (cumulus oocytes complexes) subjected to IVM (in vitro maturation) also varies among studies. The aim of the present study was to investigate whether the AI in cumulus cells of post-IVM COCs is related to the morphology of pre-IVM COCs and to meiotic competence of bovine oocytes. COCs of known morphology (four grade scale) obtained from individual follicles were matured in a well-in-drop system. After IVM, the external layers of CC of each COC were analyzed by TUNEL. In order to determine the meiotic stage, oocytes were stained with DAPI. It was found that 25.6% of bovine COCs contained apoptosis-free cumulus cells. Moreover, the majority of COCs with apoptotic cells were characterized by apoptotic index lower than 15%. The level of apoptosis in CC was related neither to COC morphology nor to the oocyte meiotic stage. It is suggested that the extent of apoptosis in cumulus cells is not a reliable quality marker of the corresponding oocyte after IVM.  相似文献   

14.
The nuclear stage at which oocytes are cryopreserved influences further development ability and cryopreservation affects ultrastructure of both cumulus cells and the oocyte. In this work, we analyze the effects of vitrification at different nuclear and cytoplasmic maturation stages on the oocyte ultrastructure and developmental ability. Culture in TCM199 + PVA with roscovitine 25 M during 24h led to meiotic arrest (MA) in cumulus-oocyte complexes (COCs), while permissive in vitro maturation (IVM) was performed in TCM199, 10% FCS, FSH-LH and 17beta-estradiol for 24 h. Oocytes were vitrified using the open pulled straw method (OPS) with minor modifications. Fresh and vitrified/warmed COCs were fixed as immature, after IVM, after meiotic arrest (MA) and after MA + IVM. Vitrification combined with MA followed by IVM produced the highest rates of degeneration, regardless of the vitrification time. As a consequence, lower proportions of embryos cleaved in these groups, although differences were eliminated at the five-eight cell stage. Development rates up to day 8 were similar in all experimental groups, being significantly lower than those in fresh controls. Only oocytes vitrified after IVM were able to give blastociysts. The morphological alterations observed can be responsible for compromised development. More research is needed to explain the low survival rates of the bovine oocyte after vitrification and warming.  相似文献   

15.
The aim of the present study was to examine the cumulus morphology and the oocyte chromatin quality of camel cumulus-oocyte complexes (COCs) at the time of recovery, and to monitor changes in oocyte chromatin configuration and apoptosis in cumulus cells from camel COCs during in vitro maturation (IVM) (0, 12, 24, 32, 36, 42, and 48 p.IVM) depending on pregnancy of donors. A total of 1023 COCs were isolated from sliced ovaries after slaughtering of 47 pregnant and 43 non-pregnant camels in an abattoir. The mean number of COCs per donor was 10.3 in pregnant and 12.5 in non-pregnant donors. The cumulus morphology of COCs was independent of the type of donor and was divided in COCs with compact (26.9 and 28%), dispersed (39.3 and 46%), corona radiata cumulus investment (27.9 and 21.7%) and without cumulus (6 and 4.2%), respectively for pregnant and non-pregnant donors. The highest proportion of COCs exhibited dispersed cumulus (P<0.05). Oocytes with meiotic stages of diplotene >50% were found only in compact (55 and 56.5%) and in dispersed COCs (58.4 and 60%), respectively for pregnant and non-pregnant donors. During IVM (0-48h) the first significant onset of specific meiotic stages were different in oocytes from pregnant donors: metaphase 1 (24-32h), metaphase 2 (36-42h), versus oocytes from non-pregnant donors: metaphase 1 (24h), metaphase 2 (32-48h) (P<0.05). The level of apoptotic cells in cumuli of matured COCs increased during IVM and was higher in matured COCs from non-pregnant donors for each time point during IVM (P<0.01). Camel oocytes meiosis during IVM is accompanied by a drastic increase of apoptosis in the surrounding cumulus cells 0-32 and 0-24h during IVM, respectively for pregnant and non-pregnant donors. The oocytes of pregnant camels require 36h of maturation to reach levels of >50% metaphase 2 stage in comparison to oocytes from non-pregnant donors where 32h are sufficient. The earlier onset of apoptosis in the COCs derived from non-pregnant donors possibly determines the faster progression of the oocytes through the final stages of meiosis.  相似文献   

16.
The aim of this present study was to increase the efficiency of blastocyst production from cows after in vitro maturation/fertilization (IVM/IVF) by oocyte selection before maturation. Oocytes were selected on the basis of brillant cresyl blue (BCB) staining, used to indicate glucose-6-phosphate dehydrogenase (G6PDH) activity. To re-valuate the hypothesis that growing oocytes are expected to have a high level of active G6PDH, while mature oocytes have low G6PDH activity, cumulus oocyte complexes (COCs) were recovered from slaughterhouse ovaries by slicing the surface of the ovary. Only oocytes with a compact cumulus investment were used. Oocytes were placed into three groups: (1) control--placed immediately into culture; (2) holding control--COCs kept in PBS containing 0.4% BSA for 90 min before placement into culture; and (3) treatment--incubation with BCB for 90 min before culture. Treated oocytes were then divided into BCB- (colorless cytoplasm, increased G6PDH) and BCB+ (colored cytoplasm, low G6PDH) on their ability to metabolize the stain. Activity of G6PDH was determined via measurement of NADP reduction induced by G6P as substrate oxidized by G6PDH in the cytosol of control, BCB- and BCB+ groups; G6PDH activity was significant higher in BCB- COCs than in control and BCB+ COCs. After IVM, oocytes were fertilized in vitro. Embryos were cultured to day 8. The rate of maturation to metaphase II was significantly higher for control and BCB+ oocytes than for BCB- oocytes. The BCB+ oocytes yielded a significantly higher proportion of blastocysts (34.1%) than did control or holding control oocytes (18.3 and 19.2%); and both controls and BCB+ oocytes had significantly higher blastocyst development than did BCB- oocytes (3.9%). These results show that the staining of bovine cumulus oocyte complexes with BCB before in vitro maturation may be used to select developmentally competent oocytes for IVF. In addition, G6PDH activity may be useful as a marker for oocyte quality in future studies on factors affecting developmental competence.  相似文献   

17.
The aim of this work was to determine the effect of follicle size on camel oocyte quality as measured by developmental competence in vitro and in vivo. Ovaries from a local slaughterhouse were dissected to obtain two classes of follicle size: small (3-6 mm) and large (>6 mm) follicles. Quality of the oocytes was assessed after in vitro maturation (IVM), in vitro fertilization (IVF) and in vitro culture (IVC) of cumulus oocyte complexes (COCs). All cultures were done in four replicates at 38.5 degrees C, under 5% CO(2) and high humidity (>95%). Only COCs with cumulus and homogenous (dark) cytoplasm were used. The COCs were matured for 28 h in TCM-199 medium supplemented with 10% heat-treated fetal calf serum (FCS), 10 ng/mL EGF, and 250 microM cysteamine. Nuclear maturation rate for each class of follicle size was determined by contrast phase microscopy in a sample of COCs (n=30) denuded, fixed and stained with aceto-orcein. In vitro fertilization was performed using fresh semen (0.5 x 10(6)spermatozoa/mL in modified TALP-solution). Fertilized oocytes were cultured in mKSOMaa, under 5% O(2) and 90% N(2). The percentage of COCs reaching metaphase II (MII) after 28 h of maturation was 87% (26/30) and 73% (22/30) for oocytes originating from large and small follicles, respectively (P>0.1). The rate of total cleavage (two cells to blastocyst stage) was greater (P<0.05) for oocytes originating from large follicles (72%; 116/162) than for those derived from small follicles (59%; 140/237). The percentage of fertilized oocytes reaching the blastocyst stage was 35% (57/162) and 20% (48/237) for oocytes collected from large and small follicles, respectively (P<0.05). The viability of in vitro-produced hatched blastocyst from the two groups (15 from 3 to 6mm follicle size and 22 from follicles >6 mm) was assessed by transfer to synchronized recipients. None of the hatched blastocysts from small follicles resulted in a pregnancy whereas 68% (15/22) of the transferred hatched embryos from large follicles developed into a 25-day pregnancy. Of the resulting 15 pregnancies, 53% (n=8) aborted (five between 2 and 4 months and three between 5 and 7 months of pregnancy). The remaining seven pregnant females gave birth to normal healthy offsprings (four females and three males). The present study shows that dromedary oocytes developmental competence is acquired late during the final phase of follicular development and this developmental ability translates into greater pregnancy rates after transfer of in vitro produced hatched blastocysts.  相似文献   

18.
Influence of reproductive status on in vitro oocyte maturation in dogs   总被引:4,自引:0,他引:4  
In the bitch, oocytes need 48-72 h to complete post-ovulatory maturation to the metaphase II stage in the isthmus of the oviduct, an interval similar to that found in in vitro studies. The effect of estrous cycle stage on in vitro meiotic competence of dog oocytes has been described in several studies. However, there are no reports evaluating the possible effects of pyometra or pregnancy on subsequent potential of oocytes recovered from such females to undergo in vitro maturation.In this study, immature cumulus-oocyte complexes (COCs) were recovered from fresh excised domestic dog ovaries in various reproductive states. The donor females were classified into groups based on stage of the estrous cycle: follicular (proestrus or estrus), luteal (diestrus) or anestrus or at the clinical conditions of pregnancy and pyometra. Grades 1 and 2 oocytes were cultured in vitro at 37 degrees C in TCM-199, supplemented with 25 mM Hepes/l (v/v), and with 10% heat inactived estrous cow serum (ECS), 50 microg/ml gentamicin, 2.2 mg/ml sodium carbonate, 22 microg/ml pyruvic acid, 1.0 microg/ml estradiol, 0.5 microg/ml FSH and 0.03 IU/ml hCG. The nuclear maturation rate was evaluated at 72 h of incubation under Hoechst 33342 (10 microg/ml) staining for fluorescence microscopy. There was no statistical difference in nuclear progression to the MII stage among the various reproductive states (follicular phase, 5.4%; diestrus, 4.2%; anestrus, 4.4%; pyometra, 8.1% and pregnancy, 4.7%). Resumption of meiosis was 24.6% at the follicular phase, 19.6% for diestrus, 16.4% for anestrus, 37.1% for pyometra and 29.2% for pregnancy. Positive and higher numbers of residue above the expected value were observed for the pyometra and pregnancy conditions at the metaphase/anaphase I (MI/AI) stages.Our results indicate that in vitro nuclear maturation of dogs oocytes is not influenced by the in vivo reproductive status of the female. The quality of the oocyte is a more reliable indicator of its potential for meiotic maturation in vitro than the hormonal environment of the donor female at the time of oocyte retrieval.  相似文献   

19.
The objective was to evaluate the effect of the interval between ovarian hyperstimulation and laparoscopic ovum pick-up (LOPU) on quality and developmental competence of goat oocytes before and after in vitro maturation (IVM) and intracytoplasmic sperm injection (ICSI). Estrus was synchronized with an intravaginal insert containing 0.3g progesterone (CIDR) for 10d, combined with a luteolytic treatment of 125 microg cloprostenol 36 h prior to CIDR removal. Ovaries were hyperstimulated with 70 mg FSH and 500 IU hCG given im 36, 60, or 72 h prior to LOPU (n=15, 16, and 7 does, respectively). For these groups, oocyte retrieval rates (mean+/-S.E.M.) were 24.7+/-2.9, 54.5+/-4.7, and 82.8+/-4.6% (P<0.001), and the proportions of cumulus-oocyte complexes (COC) with more than five layers of cumulus cells were 29.7+/-8.3, 37.6+/-6.9, and 37.3+/-7.0% (P<0.001). The proportion of IVM oocytes was highest at 72 h (82.1+/-2.8%; P<0.05), with no significant difference between 36 and 60 h (57.3+/-8.9% and 69.0+/-8.4%). Cleavage rates of ICSI embryos were 4.2+/-4.2, 70.9+/-8.4, and 78.9+/-8.2% with LOPU 36, 60, and 72 h post FSH/hCG (P<0.01), with a lower proportion of Grade-A embryos (P<0.05) following LOPU at 36 h compared to 60 and 72 h (29.7+/-8.3%, 37.6+/-6.9%, and 37.3+/-7.0%). In summary, a prolonged interval from FSH/hCG to LOPU improved oocyte retrieval rate and oocyte quality. Therefore, under the present conditions, LOPU 60 or 72 h after FSH/hCG optimized yields of good-quality oocytes for IVM and embryo production in goats.  相似文献   

20.
Sucrose and trehalose are conventional cryoprotectant additives for oocytes and embryos. Ethanol can artificially enhance activation of inseminated mature oocytes. This study aims to investigate whether artificial oocyte activation (AOA) with ethanol can promote the development competence of in vitro matured oocytes. A total of 810 human immature oocytes, obtained from 325 patients undergoing normal stimulated oocyte retrieval cycles, were in vitro maturated (IVM) either immediately after collection (Fresh group n = 291)) or after being vitrified as immature oocytes (Vitrified group n = 519). These groups were arbitrarily assigned. All fresh and vitrified oocytes which matured after a period of IVM then underwent intra-cytoplasmic sperm injection (ICSI). Half an hour following ICSI, they were either activated by 7% ethanol (AOA group) or left untreated (Non-AOA group). Fertilization, cleavage rate, blastocyst quality and aneuploidy rate were then evaluated. High-quality blastocysts were only obtained in both the fresh and vitrified groups which had undergone AOA after ICSI. Trehalose vitrification slightly, but not significantly, increased the formation rates of high-quality embryos (21.7% VS 15.4%, P > 0.05) and blastocysts (15.7% VS 7.69%, P > 0.05)) when compared with sucrose vitrification. Aneuploidy was observed in 12 of 24 (50%) of the AOA derived high quality blastocysts. High-quality blastocysts only developed from fresh or vitrified immature oocytes if the ICSI was followed by AOA. This information may be important for human immature oocytes commonly retrieved in normal stimulation cycles and may be particularly important for certain patient groups, such as cancer patients. AOA with an appropriate concentration of ethanol can enhance the developmental competence of embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号