共查询到20条相似文献,搜索用时 31 毫秒
1.
Stomata play a significant role in the Earth's water and carbon cycles, by regulating gaseous exchanges between the plant and the atmosphere. Under drought conditions, stomatal control of transpiration has long been thought to be closely coordinated with the decrease in hydraulic capacity (hydraulic failure due to xylem embolism). We tested this hypothesis by coupling a meta‐analysis of functional traits related to the stomatal response to drought and embolism resistance with simulations from a soil–plant hydraulic model. We report here a previously unreported phenomenon: the existence of an absolute limit by which stomata closure must occur to avoid rapid death in drought conditions. The water potential causing stomatal closure and the xylem pressure at the onset of embolism formation were equal for only a small number of species, and the difference between these two traits (i.e. safety margins) increased continuously with increasing embolism resistance. Our findings demonstrate the need to revise current views about the functional coordination between stomata and hydraulic traits and provide a mechanistic framework for modeling plant mortality under drought conditions. 相似文献
2.
This study is a quantitative approach to the estimation of bryophyte species richness in relation to land-use intensity at three spatial scales in highly cultivated areas. A total of 460 randomly selected habitats and their various substrates within 29 study sites were investigated with regard to their land-use intensity and their bryophyte species richness in an agricultural region of eastern Austria. On bare soils (substrate-scale), low but regular disturbance increases bryophyte diversity in comparison to lower land-use intensity. However, more frequent disturbance (e.g. ploughing more than two times a year) dramatically reduces species richness at these sites, with more than 50% of these sites showing no bryophytes. The production of reproductive units (sporophytes and vegetative units) is highest at an intermediate disturbance regime. On the habitat, as well as on the landscape-scale, there is a significant increase in total bryophyte species number as well as in the number of threatened species with decreasing land-use intensity. This is mainly due to habitat and structural diversity, which increases with decreasing land-use intensity. There are significant correlations between landuse intensity, structural diversity and species richness at the habitat as well as on the landscape scale. 相似文献
3.
4.
Yann Vitasse Alessandra Bottero Maxime Cailleret Christof Bigler Patrick Fonti Arthur Gessler Mathieu Lvesque Brigitte Rohner Pascale Weber Andreas Rigling Thomas Wohlgemuth 《Global Change Biology》2019,25(11):3781-3792
Extreme climate events (ECEs) such as severe droughts, heat waves, and late spring frosts are rare but exert a paramount role in shaping tree species distributions. The frequency of such ECEs is expected to increase with climate warming, threatening the sustainability of temperate forests. Here, we analyzed 2,844 tree‐ring width series of five dominant European tree species from 104 Swiss sites ranging from 400 to 2,200 m a.s.l. for the period 1930–2016. We found that (a) the broadleaved oak and beech are sensitive to late frosts that strongly reduce current year growth; however, tree growth is highly resilient and fully recovers within 2 years; (b) radial growth of the conifers larch and spruce is strongly and enduringly reduced by spring droughts—these species are the least resistant and resilient to droughts; (c) oak, silver fir, and to a lower extent beech, show higher resistance and resilience to spring droughts and seem therefore better adapted to the future climate. Our results allow a robust comparison of the tree growth responses to drought and spring frost across large climatic gradients and provide striking evidence that the growth of some of the most abundant and economically important European tree species will be increasingly limited by climate warming. These results could serve for supporting species selection to maintain the sustainability of forest ecosystem services under the expected increase in ECEs. 相似文献
5.
Zhuwen Xu Haiyan Ren Jiangping Cai Ruzhen Wang Mai-He Li Shiqiang Wan Xingguo Han Bernard J. Lewis Yong Jiang 《Oecologia》2014,176(4):1187-1197
Resistance, recovery and resilience are three important properties of ecological stability, but they have rarely been studied in semi-arid grasslands under global change. We analyzed data from a field experiment conducted in a native grassland in northern China to explore the effects of experimentally enhanced precipitation and N deposition on both absolute and relative measures of community resistance, recovery and resilience—calculated in terms of community cover—after a natural drought. For both absolute and relative measures, communities with precipitation enhancement showed higher resistance and lower recovery, but no change in resilience compared to communities with ambient precipitation in the semi-arid grassland. The manipulated increase in N deposition had little effect on these community stability metrics except for decreased community resistance. The response patterns of these stability metrics to alterations in precipitation and N are generally consistent at community, functional group and species levels. Contrary to our expectations, structural equation modeling revealed that water-driven community resistance and recovery result mainly from changes in community species asynchrony rather than species diversity in the semi-arid grassland. These findings suggest that changes in precipitation regimes may have significant impacts on the response of water-limited ecosystems to drought stress under global change scenarios. 相似文献
6.
Vanessa M. S. Vetter Juergen Kreyling Jürgen Dengler Iva Apostolova Mohammed A. S. Arfin‐Khan Bernd J. Berauer Sigi Berwaers Hans J. De Boeck Ivan Nijs Max A. Schuchardt Desislava Sopotlieva Philipp von Gillhausen Peter A. Wilfahrt Maja Zimmermann Anke Jentsch 《Global Change Biology》2020,26(6):3539-3551
Higher biodiversity can stabilize the productivity and functioning of grassland communities when subjected to extreme climatic events. The positive biodiversity–stability relationship emerges via increased resistance and/or recovery to these events. However, invader presence might disrupt this diversity–stability relationship by altering biotic interactions. Investigating such disruptions is important given that invasion by non‐native species and extreme climatic events are expected to increase in the future due to anthropogenic pressure. Here we present one of the first multisite invader × biodiversity × drought manipulation experiment to examine combined effects of biodiversity and invasion on drought resistance and recovery at three semi‐natural grassland sites across Europe. The stability of biomass production to an extreme drought manipulation (100% rainfall reduction; BE: 88 days, BG: 85 days, DE: 76 days) was quantified in field mesocosms with a richness gradient of 1, 3, and 6 species and three invasion treatments (no invader, Lupinus polyphyllus, Senecio inaequidens). Our results suggest that biodiversity stabilized community productivity by increasing the ability of native species to recover from extreme drought events. However, invader presence turned the positive and stabilizing effects of diversity on native species recovery into a neutral relationship. This effect was independent of the two invader's own capacity to recover from an extreme drought event. In summary, we found that invader presence may disrupt how native community interactions lead to stability of ecosystems in response to extreme climatic events. Consequently, the interaction of three global change drivers, climate extremes, diversity decline, and invasive species, may exacerbate their effects on ecosystem functioning. 相似文献
7.
ROBERT GODFREE BRENDAN LEPSCHI APRIL RESIDE TERRY BOLGER BRUCE ROBERTSON DAVID MARSHALL MALCOLM CARNEGIE 《Global Change Biology》2011,17(2):943-958
It is argued that the inclusion of spatially heterogeneous environments in biodiversity reserves will be an effective means of encouraging ecosystem resilience and plant community conservation under climate change. However, the resilience and resistance of plant populations to global change, the specific life‐history traits involved and the spatial scale at which environmentally driven demographic variation is expressed remains largely unknown for most plant groups. Here we address these questions by reporting an empirical investigation into the impacts of an unprecedented 3‐year drought on the demography, population growth rates (λ) and biogeographical distribution of core populations of the perennial grassland species Austrostipa aristiglumis in semiarid Australia. We use life‐history analysis and periodic matrix population models to specifically test the hypothesis that patch‐ and habitat‐scale variation in vital life‐history parameters result in spatial differences in the resilience and resistance of A. aristiglumis populations to extreme drought. We show that the development of critical soil water deficits during drought resulted in collapse of adult A. aristiglumis populations (λ?1), rapid interhabitat phytosociological change and overall contraction towards mesic refugia where populations were both more resistant and resilient to perturbation. Population models, combined with climatic niche analysis, suggest that, even in core areas, a significant reduction in size and habitat range of A. aristiglumis populations is likely under climate change expected this century. Remarkably, however, we show that even minor topographic variation (0.2–3 m) can generate significant variation in demographic parameters that confer population‐level resilience and resistance to drought. Our findings support the hypothesis that extreme climatic events have the capacity to induce rapid, landscape‐level shifts in core plant populations, but that the protection of topographically heterogeneous environments, even at small spatial scales, may play a key role in conserving biodiversity under climate change in the coming century. 相似文献
8.
Pasture and improved grasslands are commonly managed by a combination of artificial fertilisation and biomass removal, but a deeper understanding of how management options interact over the long-term are required to improve sustainability. Studies of multi-trophic responses to these options can provide important insights for biodiversity and soil management, particularly when they cover long time periods. In this study, we provide a novel perspective on long-term experimental field studies of grassland management by examining the direct and indirect effects of N fertilisation and mowing (with biomass retention and removal) on above-ground biodiversity, below-ground soil chemistry and their interactions. Our experimental treatments were applied annually from 1994 in medium to high soil fertility conditions on a non-native pastoral farm in New Zealand, and analysis of data to 2013 show that in general, plants and soil properties did not respond to N fertiliser treatments. In response to mowing regimes, soil properties exhibited subtle, but annually varying changes mostly related to biomass retention or removal, and plant richness was consistently higher under all mowing treatments. The management regime with the greatest gains in diversity also depended on year of study. We further analysed the indirect effects of mowing treatments on plant and arthropod richness via soil properties using structural equation modelling, and found that the impact of mowing is likely to be mediated by soil chemistry changes. In particular, the direct positive impact of mowing on plant richness may be offset by changes to soil properties, depending on whether biomass is retained or removed. We suggest that management regime effects on soil chemistry may limit plant composition changes to those species able to take advantage of altered conditions. These findings suggest that management to improve grassland diversity and soil conditions should consider the abiotic history and conditions of the site. 相似文献
9.
Juan J. Gaitán Donaldo Bran Gabriel Oliva Fernando T. Maestre Martín R. Aguiar Esteban Jobbágy Gustavo Buono Daniela Ferrante Viviana Nakamatsu Georgina Ciari Jorge Salomone Virginia Massara 《Biology letters》2014,10(10)
Drought is an increasingly common phenomenon in drylands as a consequence of climate change. We used 311 sites across a broad range of environmental conditions in Patagonian rangelands to evaluate how drought severity and temperature (abiotic factors) and vegetation structure (biotic factors) modulate the impact of a drought event on the annual integral of normalized difference vegetation index (NDVI-I), our surrogate of ecosystem functioning. We found that NDVI-I decreases were larger with both increasing drought severity and temperature. Plant species richness (SR) and shrub cover (SC) attenuated the effects of drought on NDVI-I. Grass cover did not affect the impacts of drought on NDVI-I. Our results suggest that warming and species loss, two important imprints of global environmental change, could increase the vulnerability of Patagonian ecosystems to drought. Therefore, maintaining SR through appropriate grazing management can attenuate the adverse effects of climate change on ecosystem functioning. 相似文献
10.
11.
It is unknown to what extent or by what mechanisms introducing biodiversity influences stability of high-stress ecosystems undergoing restoration. Opportunity to investigate patterns of biodiversity and resistance to disturbance in a high-stress environment was presented when severe drought struck a restoration experiment underway on abandoned limestone quarry floors in Ontario, Canada. Experimental communities were previously established within small quarry-floor plots by sowing native grass and forb species considered to be characteristic of rare natural limestone pavements called alvars. Despite adding an identical 18-species seed-mixture to all plots, realized communities varied extensively with respect to the numbers of species established (species richness), the total number of individuals established (community abundance), and the number of individuals belonging to each species (population abundances). We investigated the relationship between species richness and resistance of community abundance to drought, while accounting for background richness–abundance correlation, by contrasting slopes and intercepts of the richness–abundance relationship immediately before vs. 6 weeks after the drought. This relationship was significantly positive prior to drought but 72% steeper in slope following drought, while the abundance intercept exhibited a 44% drop. Plots featuring richer, more abundant communities prior to drought thus suffered considerably less damage than species-poor, low-abundance plots. Population abundance was weakly related to richness prior to drought, but strongly and positively related to richness after the drought. At the individual species level, no species experienced greater losses of abundance with increased plot richness, but six species experienced reduced abundance losses where they co-occurred with more neighbour species. Facilitation or other mechanisms capable of increasing population resistance may thus underlie community resistance in high-stress environments. Though controlled experiments are required to establish causes of relationships reported here, the forms of these relationships suggest that managers may be able to promote resistance in high-stress ecosystems by establishing species-rich communities. 相似文献
12.
Mitsuru Hirota Pengcheng Zhang Song Gu Haihua Shen Takeo Kuriyama Yingnian Li Yanhong Tang 《Journal of plant research》2010,123(4):531-541
Characterizing the spatial variation in the CO2 flux at both large and small scales is essential for precise estimation of an ecosystem’s CO2 sink strength. However, little is known about small-scale CO2 flux variations in an ecosystem. We explored these variations in a Kobresia meadow ecosystem on the Qinghai-Tibetan plateau in relation to spatial variability in species composition and biomass. We established 14 points and measured net ecosystem production (NEP), gross primary production (GPP), and ecosystem respiration (Re) in relation to vegetation biomass, species richness, and environmental variables at each point, using an automated chamber system during the 2005 growing season. Mean light-saturated NEP and GPP were 30.3 and 40.5 μmol CO2 m−2 s−1 [coefficient of variation (CV), 42.7 and 29.4], respectively. Mean Re at 20°C soil temperature, Re20, was −10.9 μmol CO2 m−2 s−1 (CV, 27.3). Re20 was positively correlated with vegetation biomass. GPPmax was positively correlated with species richness, but 2 of the 14 points were outliers. Vegetation biomass was the main determinant of spatial variation of Re, whereas species richness mainly affected that of GPP, probably reflecting the complexity of canopy structure and light partitioning in this small grassland patch. 相似文献
13.
Hong Qian W. Daniel Kissling Xianli Wang Peter Andrews 《Journal of Biogeography》2009,36(9):1685-1697
Aim To determine the relationship between the species richness of woody plants and that of mammals after accounting for the effect of environmental variables. Location Southern Africa, including Namibia, South Africa, Lesotho, Swaziland, Botswana, Zimbabwe, and part of Mozambique. Methods We used a comprehensive dataset including the species richness of mammals and of woody plants and environmental variables for 118 quadrats (each of 25,000 km2) across southern Africa, and used structural equation models (SEMs) and spatial regressions to examine the relationship between the species richness of woody plants and of mammal trophic guilds (herbivores, insectivores, carni/omnivores) and habitat guilds (aquatic/fossorial, ground‐living, climbers, aerial), after controlling for environment. We compared the results of SEMs with those of single‐predictor regressions (without controlling for environment) and of spatial regressions (controlling for both environment and residual spatial autocorrelation). Results The geographical variation of mammal species richness in southern Africa was strongly and positively related to that of woody plant species richness, and this relationship held for most mammal guilds even when the influence of environment and spatial autocorrelation had been accounted for. However, the effect of woody plant species richness on the richness of aquatic/fossorial species almost disappeared after controlling for environment, suggesting that the congruence in species richness patterns between these two groups results from similar responses to the same environmental variables. For many mammal guilds, the relative role of environmental predictors as measured by standardized partial regression coefficients changed depending on whether non‐spatial single‐predictor regressions, non‐spatial SEMs, or spatial regressions were used. Main conclusions Woody plants are important determinants of the species richness of most mammal guilds in southern Africa, even when controlling for environment and residual spatial autocorrelation. Environmental correlates with animal species richness as measured by simple correlations or single‐predictor regressions might not always reflect direct effects; they might, at least to some degree, result from indirect effects via woody plants. Interpretations of the strength of the effect of environmental variables on mammal species richness in southern Africa depend largely on whether spatial or non‐spatial models are used. We therefore stress the need for caution when interpreting environmental ‘effects’ on broad‐scale patterns of species richness if spatial and non‐spatial methods yield contrasting results. 相似文献
14.
Plant and Soil - Root traits are increasingly used to predict how plants modify soil processes. Here, we assessed how drought-induced changes in root systems of four common grassland species... 相似文献
15.
Chang‐Cheng Liu Yu‐Guo Liu Ke Guo Yuan‐Run Zheng Guo‐Qing Li Li‐Fei Yu Rui Yang 《Physiologia plantarum》2010,139(1):39-54
Tolerance to the effects of drought and subsequent recovery after a rainfall appear to be critical for plants in the karst regions of southwestern China, which are characterized by frequent but temporary drought events. This study investigated the effects of drought intensity and repetition on photosynthesis and photoprotection mechanisms of karst plants during successive cycles of drought and subsequent recovery. Leaf water potential, gas exchange, chlorophyll fluorescence and several associated metabolic processes were studied in six plant species, including Pyracantha fortuneana (PF), Rosa cymosa (RC), Broussonetia papyrifera (BP), Cinnamomum bodinieri (CB), Platycarya longipes (PL) and Pteroceltis tatarinowii (PT) during three cycles of drought treatments at four different intensities. The four treatments were: well‐watered, mild drought, moderate drought and severe drought, each followed by rewatering events. We found that limitations to CO2 diffusion accounted for photosynthetic declines under mild and moderate drought treatments, while metabolic limitations dominated the response to severe drought. Repetition of drought did not intensify the impairment of photosynthetic metabolism regardless of drought intensity in the six species studied. Repetition of severe drought delayed the photosynthetic recoveries in PF, RC and CB after rewatering. Repetition of drought increased thermal dissipation in PF, CB and BP, as well as superoxide dismutase (EC 1.15.1.1) activity in RC and CB. Enhanced photosynthetic performance, measured as increased intrinsic water use efficiency, photosynthetic performance per unit of photosynthetic pigment, maintenance of high thermal dissipation and high ratios of carotenoids to chlorophylls, was observed during the rewatering periods. This enhanced photosynthetic performance allowed for the complete recovery of the six karst species from successive intermittent drought events. 相似文献
16.
From richer to poorer: successful invasion by freshwater fishes depends on species richness of donor and recipient basins 下载免费PDF全文
Evidence for the theory of biotic resistance is equivocal, with experiments often finding a negative relationship between invasion success and native species richness, and large‐scale comparative studies finding a positive relationship. Biotic resistance derives from local species interactions, yet global and regional studies often analyze data at coarse spatial grains. In addition, differences in competitive environments across regions may confound tests of biotic resistance based solely on native species richness of the invaded community. Using global and regional data sets for fishes in river and stream reaches, we ask two questions: (1) does a negative relationship exist between native and non‐native species richness and (2) do non‐native species originate from higher diversity systems. A negative relationship between native and non‐native species richness in local assemblages was found at the global scale, while regional patterns revealed the opposite trend. At both spatial scales, however, nearly all non‐native species originated from river basins with higher native species richness than the basin of the invaded community. Together, these findings imply that coevolved ecological interactions in species‐rich systems inhibit establishment of generalist non‐native species from less diverse communities. Consideration of both the ecological and evolutionary aspects of community assembly is critical to understanding invasion patterns. Distinct evolutionary histories in different regions strongly influence invasion of intact communities that are relatively unimpacted by human actions, and may explain the conflicting relationship between native and non‐native species richness found at different spatial scales. 相似文献
17.
18.
Christoph Scherber Juliane Heimann Günter Köhler Nadine Mitschunas Wolfgang W. Weisser 《Oecologia》2010,163(3):707-717
The resistance of a plant community against herbivore attack may depend on plant species richness, with monocultures often much more severely affected than mixtures of plant species. Here, we used a plant–herbivore system to study the effects of selective herbivory on consumption resistance and recovery after herbivory in 81 experimental grassland plots. Communities were established from seed in 2002 and contained 1, 2, 4, 8, 16 or 60 plant species of 1, 2, 3 or 4 functional groups. In 2004, pairs of enclosure cages (1 m tall, 0.5 m diameter) were set up on all 81 plots. One randomly selected cage of each pair was stocked with 10 male and 10 female nymphs of the meadow grasshopper, Chorthippus parallelus. The grasshoppers fed for 2 months, and the vegetation was monitored over 1 year. Consumption resistance and recovery of vegetation were calculated as proportional changes in vegetation biomass. Overall, grasshopper herbivory averaged 6.8%. Herbivory resistance and recovery were influenced by plant functional group identity, but independent of plant species richness and number of functional groups. However, herbivory induced shifts in vegetation composition that depended on plant species richness. Grasshopper herbivory led to increases in herb cover at the expense of grasses. Herb cover increased more strongly in species-rich mixtures. We conclude that selective herbivory changes the functional composition of plant communities and that compositional changes due to selective herbivory depend on plant species richness. 相似文献
19.