首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Red-colored bones were first found in Guishan goats in the 1980s, and they were subsequently designated red-boned Guishan goats. However, the difference remains unclear between the bone mineral density (BMD) or elemental composition in bones between red-boned Guishan goats and common Guishan goats. Analysis of femoral bone samples by dual-energy X-ray absorptiometry and inductively coupled plasma optical emission spectrometry revealed an increase in bone mineral density in the femoral diaphysis and distal femur of red-boned Guishan goats at 18 and 36?months of age. The data revealed that BMD increased in both the red-boned and common Guishan goats from 18 to 36?months of age. The data also indicated that the ratio of the BMD values of red-boned to common Guishan goats was higher at 36?months of age than they were at 18?months of age. Furthermore, the levels of calcium, phosphorus, magnesium, barium, zinc, manganese, and aluminum were significantly higher in red-boned Guishan goats than common Guishan goats at 18 and 36?months of age. The results indicate that the red-boned Guishan goats were linked to the elevated levels of mineral salts observed in the bones and that this in turn may be linked to the elevated BMD levels encountered in red-boned Guishan goats. These reasons may be responsible for the red coloration in the bones of red-boned Guishan goats.  相似文献   

2.
The purpose of the present study was to compare the effects of alendronate and alfacalcidol on cancellous and cortical bone mass and bone mechanical properties in ovariectomized rats. Twenty-six female Sprague-Dawley rats, 7 months of age, were randomized by the stratified weight method into four groups: the sham-operated control (Sham) group and the three ovariectomy (OVX) groups, namely, OVX + vehicle, OVX + alendronate (2.5 mg/kg, p.o., daily), and OVX + alfacalcidol (0.5 mug/kg, p.o., daily). At the end of the 8-week experimental period, bone histomorphometric analyses of cancellous bone at the proximal tibial metaphysis and cortical bone at the tibial diaphysis were performed, and the mechanical properties of the femoral distal metaphysis and femoral diaphysis were evaluated. OVX decreased cancellous bone volume per total tissue volume (BV/TV), and the maximum load of the femoral distal metaphysis, as a result of increases in serum osteocalcin (OC) levels, and also the number of osteoclasts (N.Oc), osteoclast surface (OcS) and bone formation rate (BFR) per bone surface (BS), and BFR/BV, without any effect on cortical area (Ct Ar), or maximum load of the femoral diaphysis. Alendronate prevented this decrease in cancellous BV/TV by suppressing increases in N.Oc/BS, OcS/BS, BFR/BS, and BFR/BV, without any apparent effect on Ct Ar, or maximum load of the femoral distal metaphysis and femoral diaphysis. On the other hand, alfacalcidol increased cancellous BV/TV, Ct Ar, and the maximum load of the femoral distal metaphysis and femoral diaphysis, by mildly decreasing trabecular BFR/BV, maintaining trabecular mineral apposition rate and osteoblast surface per BS, increasing periosteal and endocortical BFR/BS, and preventing an increase in endocortical eroded surface per BS. The present study clearly showed the differential skeletal effects of alendronate and alfacalcidol in ovariectomized rats. Alendronate prevented OVX-induced cancellous bone loss by suppressing bone turnover, while alfacalcidol improved cancellous and cortical bone mass and bone strength by suppressing bone resorption and maintaining or even increasing bone formation.  相似文献   

3.
High-impact exercise is considered to be very beneficial for bones. We investigated the ability of jump exercise to restore bone mass and structure after the deterioration induced by tail suspension in growing rats and made comparisons with treadmill running exercise. Five-week-old male Wistar rats (n = 28) were randomly assigned to four body weight-matched groups: a spontaneous recovery group after tail suspension (n = 7), a jump exercise group after tail suspension (n = 7), a treadmill running group after tail suspension (n = 7), and age-matched controls without tail suspension or exercise (n = 7). Treadmill running was performed at 25 m/min, 1 h/day, 5 days/wk. The jump exercise protocol consisted of 10 jumps/day, 5 days/wk, with a jump height of 40 cm. Bone mineral density (BMD) of the total right femur was measured by dual-energy X-ray absorptiometry. Three-dimensional trabecular bone architecture at the distal femoral metaphysis was evaluated using microcomputed tomography. After 5 wk of free remobilization, right femoral BMD, right hindlimb muscle weight, and body weight returned to age-matched control levels, but trabeculae remained thinner and less connected. Although both jump and running exercises during the remobilization period increased trabecular bone mass, jump exercise increased trabecular thickness, whereas running exercise increased trabecular number. These results indicate that restoration of trabecular bone architecture induced by jump exercise during remobilization is predominantly attributable to increased trabecular thickness, whereas running adds trabecular bone mass through increasing trabecular number, and suggest that jumping and running exercises have different mechanisms of action on structural characteristics of trabecular bone.  相似文献   

4.
A mutation in LRP5 (low-density lipoprotein receptor-related protein 5) has been shown to increase bone mass and density in humans and animals. Transgenic mice expressing the LRP5 mutation (G171V) demonstrate an increase in bone mass as compared to non-transgenic (NTG) littermates. This study evaluated LRP5 gene and gender-related influences on the structural and biomechanical strength properties of trabecular and cortical bone in femurs and vertebrae (L5) of 17-week-old mice. Micro-computed tomography was used to evaluate the trabecular bone structure of distal femurs and vertebrae ex vivo. Mechanical testing of the trabecular bone in the distal femur was done to determine biomechanical strength. Differences due to genotype and gender were tested using two-way ANOVA at a significance level of p<0.05. Trabecular bone structural parameters (BV/TV, trabecular thickness, number, etc.) at the distal femur, femoral neck, and vertebral body sites were greater in the transgenic as compared to the NTG mice. In addition, vertebral cortical thickness and trabecular strength parameters (ultimate and yield loads, stiffness, ultimate and yield stresses) in the distal femur were greater in the transgenic mice as compared to NTG. The increasing trends of cortical thickness were also noted in the transgenic mice as compared to NTG. Within LRP5 (G171V) mutant mice, there were significant gender-related differences in some of the trabecular bone structural parameters at all the sites (distal femur, femoral neck, and vertebral body). However, unlike trabecular structural parameters, the gender-specific differences were not found in the trabecular strength of LRP5 transgenic mice. In summary, these findings suggest that the LRP5 (G171V) mutation results in greater trabecular bone structure and strength at both the distal femurs and vertebral bodies as compared to NTG. In addition, only the trabecular structure parameters were affected by gender within the LRP5 (G171V) mutation.  相似文献   

5.
Three-dimensional trabecular architecture was investigated in the femora of tail-suspended young growing rats, and the effects of jump exercise during remobilization were examined. Five-week-old male Wistar rats (n = 35) were randomly assigned to five body weight-matched groups: tail-suspended group (SUS; n = 7); sedentary control group for SUS (S(CON); n = 7); spontaneous recovery group after tail suspension (S+R(CON), n = 7); jump exercise group after tail suspension (S+R(JUM); n = 7); and age-matched control group for S+R(CON) and S+R(JUM) without tail suspension and exercise (S(CON)+R(CON); n = 7). Rats in SUS and S(CON) were killed immediately after tail suspension for 14 days. The jump exercise protocol consisted of 10 jumps/day, 5 days/wk, and jump height was 40 cm. Bone mineral density (BMD) of the femur and three-dimensional trabecular bone architecture at the distal femoral metaphysis were measured. Tail suspension induced a 13.6% decrease in total femoral BMD (P < 0.001) and marked deterioration of trabecular architecture. After 5 wk of free remobilization, femoral BMD, calf muscle weight, and body weight returned to age-matched control levels, but trabeculae remained thinner and less connected. On the other hand, S+R(JUM) rats showed significant increases in trabecular thickness, number, and connectivity compared with S+R(CON) rats (62.8, 31.6, and 24.7%, respectively; P < 0.05), and these parameters of trabecular architecture returned to the levels of S(CON)+R(CON). These results indicate that suspension-induced trabecular deterioration persists after remobilization, but jump exercise during remobilization can restore the integrity of trabecular architecture and bone mass in the femur in young growing rats.  相似文献   

6.
Skeletal effects of zinc deficiency in growing rats.   总被引:6,自引:0,他引:6  
There is ample evidence that zinc plays an important role in bone metabolism and zinc deficiency has been implicated as a risk factor in the development of osteoporosis. It was the aim of the present study to investigate the skeletal effects of alimentary zinc deficiency in growing rats using quantitative bone histomorphometry. Twenty-four male Sprague Dawley rats with a mean initial body weight of 101 +/- 2 g were allocated in two groups of 12 rats each and had free access to a semi-synthetic, casein-based, zinc-deficient diet (0.76 mg zinc/kg) or to the same diet supplemented with 60 mg zinc per kg. All rats were sacrificed 42 days after the start of the experiment and the right distal femur was removed for bone histomorphometry. Relative to controls (+Zn), the zinc-deficient rats (-Zn) had a significantly lower body weight and about an 80% reduction in plasma and femur zinc concentration. The histomorphometric evaluation of the distal femoral metaphysis showed that zinc deficiency led to a 45% reduction (p < 0.01) in cancellous bone mass and to a deterioration of trabecular bone architecture, with fewer and thinner trabeculae. The osteopenia in -Zn rats was accompanied by significant reductions in osteoid perimeter (-31%, p < 0.05), osteoblast perimeter (-30%, p < 0.05), and osteoclast number (-38%, p < 0.01) relative to +Zn controls. We conclude that zinc deficiency induced low turnover osteopenia in femoral cancellous bone of growing rats. These results support the hypothesis that zinc deficiency during growth may impair the accumulation of maximal bone mass in humans; additionally, they suggest that zinc deficiency may play a role as a risk factor in the pathogenesis of osteoporosis.  相似文献   

7.
To accommodate functional demands, the composition and organization of the skeleton differ among species. Microcomputed tomography has improved our ability markedly to assess structural parameters of cortical and cancellous bone. The current study describes differences in cortical and cancellous bone structure, bone mineral density, and morphology (geometry) at the proximal femur, proximal femoral diaphysis, lumbar vertebrae, and mandible in mice, rats, rabbits, dogs, and nonhuman primates. This work enhances our understanding of bone gross and microanatomy across lab animal species and likely will enable scientists to select the most appropriate species and relevant bone sites for research involving skeleton. We evaluated the gross and microanatomy of the femora head and neck, lumbar spine, and mandible and parameters of cancellous bone, including trabecular number, thickness, plate separation, and connectivity among species. The skeletal characteristics of rabbits, including a very short femoral neck and small amounts of cancellous bone at the femoral neck, vertebral body, and mandible, seem to make this species the least desirable for preclinical research of human bone physiology; in comparison, nonhuman primates seem the most applicable for extrapolation of data to humans. However, rodent (particularly rat) models are extremely useful for conducting basic research involving the skeleton and represent reliable and affordable alternatives to dogs and nonhuman primates. Radiology and microcomputed tomography allow for reliable evaluation of bone morphology, microarchitecture, and bone mineral density in preclinical and clinical environments.  相似文献   

8.
We combined biochemical measurements with novel techniques for image analysis in the rat femur to characterize the location and nature of the defect in mineralization known to occur in growing animals after spaceflight. Concentrations of mineral and osteocalcin were low in the distal half of the diaphysis and concentrations of collagen were low with evidence of increased synthesis in the proximal half of the diaphysis of the flight bones. X-ray microtomography provided semiquantitative data in computer-generated sections of whole wet bone that indicated a longitudinal gradient of decreasing mineralization toward the distal diaphysis, similar to the chemistry results. Analysis of embedded sections by backscattered electrons in a scanning electron microscope revealed distinct patterns of mineral distribution in the proximal, central, and distal regions of the diaphysis and also showed a net reduction in mineral levels toward the distal shaft. Increases in mineral density to higher fractions in controls were less in the flight bones at all three levels, with the most distal cross-sectional area most affected. The combined results from these novel techniques identified the areas of femoral diaphysis most vulnerable to the mineralization defect associated with spaceflight and/or the stress of landing.  相似文献   

9.
The present study was aimed at estimate, based on the rat model of human moderate and relatively high chronic exposure to cadmium (Cd), whether zinc (Zn) supplementation may prevent Cd-induced weakening in the bone biomechanical properties. For this purpose, male Wistar rats were administered Cd (5 or 50 mg/l) or/and Zn (30 or 60 mg/l) in drinking water for 6 and 12 months. Bone mineral density (BMD) and biomechanical properties (yield load, ultimate load, post-yield load, displacement at yield and at ultimate, stiffness, work to fracture, yield stress, ultimate stress and Young modulus of elasticity) of the femoral distal end and femoral diaphysis were examined. Biomechanical properties of the distal femur were estimated in a compression test, whereas those of the femoral diaphysis -- in a three-point bending test. Exposure to Cd, in a dose and duration dependent manner, decreased the BMD and weakened the biomechanical properties of the femur at its distal end and diaphysis. Zn supplementation during Cd exposure partly, but importantly, prevented the weakening in the bone biomechanical properties. The favorable Zn influence seemed to result from an independent action of this bioelement and its interaction with Cd. However, Zn supply at the exposure to Cd had no statistically significant influence on the BMD at the distal end and diaphysis of the femur. The results of the present paper suggest that Zn supplementation during exposure to Cd may have a protective influence on the bone tissue biomechanical properties, and in this way it can, at least partly, decrease the risk of bone fractures. The findings seem to indicate that enhanced dietary Zn intake may be beneficial for the skeleton in subjects chronically exposed to Cd.  相似文献   

10.
This study compared the capabilities of micro-computed tomography (micro-CT) and dental cone-beam computed tomography (CBCT) in assessing trabecular bone parameters and cortical bone strength. Micro-CT and CBCT scans were applied to 28 femurs from 14 rats to obtain independent measurements of the volumetric cancellous bone mineral density (vCanBMD) in the femoral head, volumetric cortical bone mineral density (vCtBMD) in the femoral diaphysis, cross-sectional moment of inertia (CSMI), and bone strength index (BSI) (=CSMI×vCtBMD). Five structural parameters of the trabecular bone of the femoral head were calculated from micro-CT images. A three-point bending test was then conducted to measure the fracture load of each femur. Bivariate linear Pearson analysis was conducted to calculate the correlation coefficients (r values) of the micro-CT, dental CBCT, and three-point bending measurements. The statistical analyses showed a strong correlation between vCanBMD values obtained using micro-CT and dental CBCT (r=0.830). There were strong or moderate correlation between vCanBMD measured using dental CBCT and five parameters of trabecular structure measured using micro-CT. Additionally, the results were satisfactory regardless of whether micro-CT or dental CBCT was used to measure the femoral diaphysis vCtBMD (r=0.733 and 0.680, respectively), CSMI (r=0.756 and 0.726, respectively), or BSI (r=0.846 and 0.847, respectively) to predict fracture loads. This study has yielded a new method for using dental CBCT to evaluate bone parameters and bone strength; however, further studies are necessary to validate the use of dental CBCT on humans.  相似文献   

11.
Although the correspondence between habitual activity and diaphyseal cortical bone morphology has been demonstrated for the fore- and hind-limb long bones of primates, the relationship between trabecular bone architecture and locomotor behavior is less certain. If sub-articular trabecular and diaphyseal cortical bone morphology reflects locomotor patterns, this correspondence would be a valuable tool with which to interpret morphological variation in the skeletal and fossil record. To assess this relationship, high-resolution computed tomography images from both the humeral and femoral head and midshaft of 112 individuals from eight anthropoid genera (Alouatta, Homo, Macaca, Pan, Papio, Pongo, Trachypithecus, and Symphalangus) were analyzed. Within-bone (sub-articular trabeculae vs. mid-diaphysis), between-bone (forelimb vs. hind limb), and among-taxa relative distributions (femoral:humeral) were compared. Three conclusions are evident: (1) Correlations exists between humeral head sub-articular trabecular bone architecture and mid-humerus diaphyseal bone properties; this was not the case in the femur. (2) In contrast to comparisons of inter-limb diaphyseal bone robusticity, among all species femoral head trabecular bone architecture is significantly more substantial (i.e., higher values for mechanically relevant trabecular bone architectural features) than humeral head trabecular bone architecture. (3) Interspecific comparisons of femoral morphology relative to humeral morphology reveal an osteological "locomotor signal" indicative of differential use of the forelimb and hind limb within mid-diaphysis cortical bone geometry, but not within sub-articular trabecular bone architecture.  相似文献   

12.
New techniques in bone mechanics, and the demonstration that locomotor function can be interpreted based on patterns of structural strength delineated by these new techniques, lay the foundation for analyses of structural strength in nonhuman primate long bones. The present paper details topographic variability in structural strength of the femoral diaphysis of Macaca as a basis for further quantifying form-function interactions in pronograde primates. The femoral diaphyses of 42 macaques were serially sectioned. These sections were digitized, and coordinate points were submitted to the SCADS computerized stress analysis program. This analysis indicated that the femoral diaphysis of Macaca is better adapted proximally than distally to resist axial loads. The proximal third of the femur is better able to resist bending loads in the posterolateral/anteromedial direction than in the standard planes. The distal femur is geometrically well suited to resist high bending loads, particularly in the mediolateral plane. The elliptical construction of the distal femur is designed to resist high torsional loads as well. When compared with density data on the macaque femoral diaphysis, these data indicate extremely high rigidity in the mediolateral plane. The inverse relationship between density and structural rigidity distally indicates the presence of compensatory mechanisms between structural strength, geometry, and density. Similarities in femoral mechanics in macaques and humans suggest uniformity of stress patterns of the lower extremity in terrestrial quadrupedal and bipedal locomotion.  相似文献   

13.
The present study compared the bone anabolic effects of graded doses of alfacalcidol in proximal femurs (hematopoietic, red marrow skeletal site) and distal tibiae (fatty, yellow marrow skeletal site). One group of 8.5-month-old female Sprague-Dawley rats were killed at baseline and 4 groups were treated 5 days on/2 days off/week for 12 weeks with 0, 0.025, 0.05 and 0.1 microg alfacalcidol/kg by oral gavage. The proximal femur, bone site with hematopoietic marrow, as well as the distal tibia bone site with fatty marrow, were processed undecalcified for quantitative bone histomorphometry. In the red marrow site of the proximal femoral metaphysis (PFM), 0.1 microg alfacalcidol/kg induced increased cancellous bone mass, improved architecture (decreased trabecular separation, increased connectivity), and stimulated local bone formation of bone 'boutons' (localized bone formation) on trabecular surfaces. There was an imbalance in bone resorption and formation, in which the magnitude of depressed bone resorption greater than depressed bone formation resulted in a positive bone balance. In addition, bone 'bouton' formation contributed to an increase in bone mass. In contrast, the yellow marrow site of the distal tibial metaphysis (DTM), the 0.1 microg alfacalcidol/kg dose induced a non-significant increased cancellous bone mass. The treatment decreased bone resorption equal to the magnitude of decreased bone formation. No bone 'bouton' formation was observed. These findings indicate that the highest dose of 0.1 microg alfacalcidol/kg for 12 weeks increased bone mass (anabolic effect) at the skeletal site with hematopoietic marrow of the proximal femoral metaphysis, but the increased bone mass was greatly attenuated at the fatty marrow site of the distal tibial metaphysis. In addition, the magnitude of the bone gain induced by alfacalcidol treatment in red marrow cancellous bone sites of the proximal femoral metaphysis was half that of the lumbar vertebral body. The latter data were from a previous report from the same animal and protocol. These findings indicated that alfacalcidol as an osteoporosis therapy is less efficacious as a positive bone balance agent that increased trabecular bone mass in a non-vertebral skeletal site where bone marrow is less hematopoietic.  相似文献   

14.
The purpose of this study was to verify the effect of organic gallium on ovariectomized osteopenic rats. Thirty Wistar female rats used were divided into three groups: (1) sham-operation rats (control), (2) ovariectomized (OVX) rats with osteopenia, and (3) OVX rats with osteopenia treated with organic gallium. Treatments were performed over an 8-week period. At sacrifice, the fifth lumbar vertebral body, one tibia, one femur, and the fourth lumbar vertebrae were removed, subjected to micro-CT for determination of trabecular bone structure, and then processed for histomorphometry to assess bone turnover. The femoral neck was used for mechanical compression testing. Treatment with organic gallium increased bone volume in OVX animals. Organic gallium-treated animals had significant increases in trabecular and cortical thickness and bone strength. The plasma total calcium and inorganic phosphate concentrations in OVX rats decreased and bone mineral content in the lumbar vertebrae and femur increased after treatment with organic gallium. These data provide an important proof of concept that organic gallium may represent a powerful approach to treating or reversing severe osteoporosis in humans.  相似文献   

15.
This investigation of microstructure in the human proximal femur probes the relationship between the parameters of the FRAX index of fracture risk and the parameters of bone microstructure. The specificity of fracture sites at the proximal femur raises the question of whether trabecular parameters are site-specific during post-menopause, before occurrence of fragility fracture. The donated proximal femurs of sixteen post-menopausal women in the sixth and seventh decades of life, free of metabolic pathologies and therapeutic interventions that could have altered the bone tissue, constituted the material of the study. We assessed bone mineral density of the proximal femurs by dual energy X-ray absorptiometry and then sectioned the femurs through the center of the femoral head and along the femoral neck axis. For each proximal femur, morphometry of trabeculae was conducted on the plane of the section divided into conventional regions and sub-regions consistent with the previously identified trabecular families that provide regions of relatively homogeneous microstructure. Mean trabecular width and percent bone area were calculated at such sites. Our findings indicate that each of mean trabecular width and percent bone area vary within each proximal femur independently from each other, with dependence on site. Both trabecular parameters show significant differences between pairs of sites. We speculate that a high FRAX index at the hip corresponds to a reduced percent bone area among sites that gives a more homogeneous and less site-specific quality to the proximal femur. This phenomenon may render the local tissue less able to carry out the expected mechanical function.  相似文献   

16.
The purpose of this study was to verify the effect of organic gallium on ovariectomized osteopenic rats. Thirty Wistar female rats used were divided into three groups: (1) sham-operation rats (control), (2) ovariectomized (OVX) rats with osteopenia, and (3) OVX rats with osteopenia treated with organic gallium. Treatments were performed over an 8-week period. At sacrifice, the fifth lumbar vertebral body, one tibia, one femur, and the fourth lumbar vertebrae were removed, subjected to micro-CT for determination of trabecular bone structure, and then processed for histomorphometry to assess bone turnover. The femoral neck was used for mechanical compression testing. Treatment with organic gallium increased bone volume in OVX animals. Organic gallium-treated animals had significant increases in trabecular and cortical thickness and bone strength. The plasma total calcium and inorganic phosphate concentrations in OVX rats decreased and bone mineral content in the lumbar vertebrae and femur increased after treatment with organic gallium. These data provide an important proof of concept that organic gallium may represent a powerful approach to treating or reversing severe osteoporosis in humans.  相似文献   

17.
Summary The femurs from rats given 120 ppm fluoride in their drinking water for 4 weeks were examined with histological, histochemical, and radiographic methods. Blood removed from the rats prior to sacrifice was analyzed for calcium, phosphorus, and alkaline phosphatase. Results of this study indicated that the ingestion of fluoride produced wide osteoid seams on the periosteal surface of the femoral diaphysis within 4 weeks. The increase in osteoid appeared to be due to an increase in the number of osteoid-producing cells (osteoblasts) along with a subsequent delay in the mineralization of this tissue. The metabolic activity of osteoblasts did not appear to be affected since the intracellular production of acid and alkaline phosphatase was not inhibited. However, due to the high concentration of fluoride ingested, abnormal collagen deposition and a change in bone mineral may have combined to cause a delay in osteoid mineralization. Mineralization was also delayed in the distal femoral epiphyseal plate resulting in an increase in the number of hypertrophied cells. Resorption of metaphyseal trabecular bone, presumably formed prior to fluoride administration, was increased causing a reduction in the amount of trabeculae extending into the shaft of the femur. Concurrent with these changes in bone, the serum levels of calcium, phosphorus, and alkaline phosphatase remained within normal ranges.  相似文献   

18.
目的:绝经后骨质疏松是好发于中老年女性人群中的骨代谢疾病,去卵巢骨质疏松大鼠模型是国内外通用的模拟绝经后骨质疏松发生的经典动物模型,本研究通过观察去卵巢骨质疏松大鼠股骨骨微结构的动态变化,为骨质疏松大鼠模型的临床应用提供理论参考依据。方法:将90只3月龄雌性SD大鼠按体重分层后随机分为基础组(10只)、假手术组(40只)和去卵巢组(40只)。分别在手术前(基础组)和后的3、6、12、24周,腹主动脉取血处死基础组以及假手术组和去卵巢组大鼠,每组各8-10只。每组中随机取6只大鼠,对其左股骨行micro-CT扫描及三维结构重建。选择股骨远端距生长板远端1 mm处,2.0 mm×3.5 mm,厚0.9 mm的骨组织为感兴趣区域,对感兴趣区域进行骨形态计量学分析。结果:与0周组比较,从去卵巢3周开始一直持续到24周,去卵巢组大鼠股骨vBMD、BV/TV和Tb.N显著降低,Tb.Sp和SMI显著升高,而Tb.Th无显著变化;与0周组比较,从假手术后3周开始一直到24周,假手术组所有检测指标均无显著变化。与同周龄假手术组比较,从去卵巢3周开始一直持续到24周,去卵巢组大鼠股骨Tb.N、BV/TV和vBMD显著降低,Tb.Sp显著升高,而Tb.Th没有显著变化。从去卵巢6周开始一直到24周,去卵巢组大鼠SMI显著增加。结论:3月龄大鼠股骨远端的骨微结构在去卵巢3周时就出现显著变化。提示,采用3月龄大鼠进行抗骨质疏松药物筛选时,去卵巢3周后就可以进行药物处理。  相似文献   

19.
Ontogenetic changes in the human femur associated with the acquisition of bipedal locomotion, especially the development of the bicondylar angle, have been well documented. The purpose of this study is to quantify changes in the three-dimensional structure of trabecular bone in the human proximal femur in relation to changing functional and external loading patterns with age. High-resolution X-ray computed tomography scan data were collected for 15 juvenile femoral specimens ranging in age from prenatal to approximately nine years of age. Serial slices were collected for the entire proximal femur of each individual with voxel resolutions ranging from 0.017 to 0.046 mm depending on the size of the specimen. Spherical volumes of interest were defined within the proximal femur, and the bone volume fraction, trabecular thickness, trabecular number, and fabric anisotropy were calculated in three dimensions. Bone volume fraction, trabecular number, and degree of anisotropy decrease between the age of 6 months and 12 months, with the lowest values for these parameters occurring in individuals near 12 months of age. By age 2-3 years, the bone volume, thickness, and degree of anisotropy increase slightly, and regions in the femoral neck become more anisotropic corresponding to the thickening of the inferior cortical bone of the neck. These results suggest that trabecular structure in the proximal femur reflects the shift in external loading patterns associated with the initiation of unassisted walking in infants.  相似文献   

20.
In the present study, a homogenous polysaccharide (DFPW) was isolated and purified from the dried rhizome of Drynaria fortunei, and its protective effect against osteoporosis was investigated in ovariectomized (OVX) rats. Histological analysis indicated that oral administration of DFPW (100 and 400 mg/kg) for 12 weeks significantly improved trabecular bone mass, as demonstrated by the increase in trabecular area, trabecular thickness and its number in OVX rats. Furthermore, the decline of bone mineral density and bone mineral content including Ca, P and Mg induced by OVX was reversed by the DFPW administration. This function was achieved by the decreased levels of the bone turnover markers, such as serum ALP, urinary deoxypyridinoline (DPD), Ca and P excretions. Besides, DFPW improved biomechanical parameters (maximum load, energy, Young's, modulus and maximum stress) to strengthen the hardness and strength femoral diaphysis in OVX rats. These results strongly suggested that DFPW might be a hopeful alternative therapeutics to treat postmenopausal osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号