首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Histone modifications have emerged to be a major regulatory mechanism for gene expression (1-4). However, it is not clear how histone modifications are physiologically regulated. Here, we show that mono-ubiquitinated H2B at lysine 123 (uH2B) in the yeast (Saccharomyces cerevisiae) is present in exponential phase and absent in stationary phase. A wide array of carbohydrates or sugars, including glucose, fructose, mannose, and sucrose, are capable of inducing uH2B in stationary phase yeast. In contrast, non-metabolic glucose analogs are defective in inducing uH2B. Furthermore, uH2B induction is inhibited by iodoacetate, an inhibitor of glyceraldehyde-3-phosphate dehydrogenase in glycolysis. Moreover, uH2B induction is markedly impaired in yeast mutants, in which glycolytic genes are deleted. These data indicate that glycolysis is required for the carbohydrate-induced mono-ubiquitination of H2B at lysine 123. Therefore, our study reveals a novel paradigm of metabolic regulation of histone modifications.  相似文献   

4.
Resveratrol (3,4′,5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-β-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular senescence programs that are intact in glioma cells.  相似文献   

5.
Enzymatic deubiquitination of mono-ubiquitinated nucleosomal histone H2A (uH2A) and H2B (uH2B) is closely associated with mitotic chromatin condensation, although the function of this histone modification in cell division remains ambiguous. Here we show that rapid and extensive deubiquitination of nucleosomal uH2A occurs in Jurkat cells undergoing apoptosis initiated by anti-Fas activating antibody, staurosporine, etoposide, doxorubicin and the proteasome inhibitor, N-acetyl-leucyl-leucyl-norlucinal. These diverse apoptosis inducers also promoted the accumulation of slowly migrating, high molecular weight ubiquitinated proteins and depleted the cellular pool of unconjugated ubiquitin. In apoptotic cells, ubiquitin was cleaved from uH2A subsequent to the appearance of plasma membrane blebbing, and deubiquitination of uH2A closely coincided with the onset of nuclear pyknosis and chromatin condensation. Nucleosomal uH2A deubiquitination, poly (ADP-ribose)polymerase (PARP) cleavage and chromatin condensation were prevented in cells challenged with apoptosis inducers by pretreatment with the pan-caspase inhibitor, zVAD-fmk, or by over-expressing anti-apoptotic Bcl-xL protein. These results implicate a connection between caspase cascade activation and nucleosomal uH2A deubiquitination. Transient transfection of 293 cells with the gene encoding Ubp-M, a human deubiquitinating enzyme, promoted uH2A deubiquitination, while an inactive mutated Ubp-M enzyme did not. However, Ubp-M-promoted deubiquitination of uH2A was insufficient to initiate apoptosis in these cells. We conclude that uH2A deubiquitination is a down-stream consequence of procaspase activation and that unscheduled cleavage of ubiquitin from uH2A is a consistent feature of the execution phase of apoptosis rather than a determining or initiating apoptogenic event. Nucleosomal uH2A deubiquitination may function as a cellular sensor of stress in situations like apoptosis through which cells attempt to preserve genomic integrity.  相似文献   

6.
Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Jumonji domain containing 2B (JMJD2B) is a newly identified histone demethylase that regulates chromatin structure or gene expression by removing methyl residues from trimethylated lysine 9 on histone H3. Recent observations have shown oncogenic activity of JMJD2B. We explored the functional role of JMJD2B in cancer cell proliferation, survival and tumorigenesis, and determined its expression profile in gastric cancer. Knocking down JMJD2B expression by small interfering RNA (siRNA) in gastric and other cancer cells inhibited cell proliferation and/or induced apoptosis and elevated the expression of p53 and p21(CIP1) proteins. The enhanced p53 expression resulted from activation of the DNA damage response pathway. JMJD2B knockdown markedly suppressed xenograft tumor growth in vivo in mice. Moreover, JMJD2B expression was increased in primary gastric-cancer tissues of humans. Thus, JMJD2B is required for sustained proliferation and survival of tumor cells in vitro and in vivo, and its aberrant expression may contribute to the pathogenesis of gastric cancer.  相似文献   

7.
8.
In many higher organisms, 5%-15% of histone H2A is ubiquitylated at lysine 119 (uH2A). The function of this modification and the factors involved in its establishment, however, are unknown. Here we demonstrate that uH2A occurs on the inactive X chromosome in female mammals and that this correlates with recruitment of Polycomb group (PcG) proteins belonging to Polycomb repressor complex 1 (PRC1). Based on our observations, we tested the role of the PRC1 protein Ring1B and its closely related homolog Ring1A in H2A ubiquitylation. Analysis of Ring1B null embryonic stem (ES) cells revealed extensive depletion of global uH2A levels. On the inactive X chromosome, uH2A was maintained in Ring1A or Ring1B null cells, but not in double knockout cells, demonstrating an overlapping function for these proteins in development. These observations link H2A ubiquitylation, X inactivation, and PRC1 PcG function, suggesting an unanticipated and novel mechanism for chromatin-mediated heritable gene silencing.  相似文献   

9.
Gastrointestinal cancer is associated with a high mortality rate. Here, we report that the splice variant of NRP/B contributes to tumorigenic activity in highly malignant gastric cancer through dissociation from the tumor repressor, HDAC5. NRP/B mRNA expression is significantly higher in the human gastric cancer tissues than in the normal tissues. Further, high levels of both the NRP/B splice variant and Lgr5, but not the full-length protein, are found in highly tumorigenic gastric tumor cells, but not in non-tumorigenic cells. The loss of NRP/B markedly inhibits cell migration and invasion, which reduces tumor formation in vivo. Importantly, the inhibition of alternative splicing increases the levels of NRP/B-1 mRNA and protein in AGS cells. The ectopic expression of full-length NRP/B exhibits tumor-suppressive activity, whereas NRP/B-2 induces the noninvasive human gastric cancer cells tumorigenesis. The splice variant NRP/B-2 which loses the capacity to interact with tumor repressors promoted oncogenic activity, suggesting that the BTB/POZ domain in the N-terminus has a crucial role in the suppression of gastric cancer. Therefore, the regulation of alternative splicing of the NRP/B gene is a potential novel target for the treatment of gastrointestinal cancer.  相似文献   

10.
《遗传学报》2021,48(7):618-630
Epigenetic regulators have been implicated in tumorigenesis of many types of cancer; however, their roles in endothelial cell cancers such as canine hemangiosarcoma(HSA) have not been studied. In this study, we find that lysine-specific demethylase 2 b(KDM2 B) is highly expressed in HSA cell lines compared with normal canine endothelial cells. Silencing of KDM2 B in HSA cells results in increased cell death in vitro compared with the scramble control by inducing apoptosis through the inactivation of the DNA repair pathways and accumulation of DNA damage. Similarly, doxycycline-induced KDM2 B silencing in tumor xenografts results in decreased tumor sizes compared with the control. Furthermore, KDM2 B is also highly expressed in clinical cases of HSA. We hypothesize that pharmacological KDM2 B inhibition can also induce HSA cell death and can be used as an alternative treatment for HSA. We treat HSA cells with GSK-J4, a histone demethylase inhibitor, and find that GSK-J4 treatment also induces apoptosis and cell death. In addition, GSK-J4 treatment decreases tumor size. Therefore, we demonstrate that KDM2 B acts as an oncogene in HSA by enhancing the DNA damage response. Moreover, we show that histone demethylase inhibitor GSK-J4 can be used as a therapeutic alternative to doxorubicin for HSA treatment.  相似文献   

11.
12.
Structure of polyubiquitinated histone H2A   总被引:6,自引:0,他引:6  
B E Nickel  J R Davie 《Biochemistry》1989,28(3):964-968
We have recently demonstrated that trout liver histones H2A, H2B, and H2A.Z can be polyubiquitinated [Davie, J.R., Delcuve, G.P., Nickel, B.E., Moyer, R., & Bailey, G. (1987) Cancer Res. 47, 5407-5410]. In the present study we determined the arrangement of the ubiquitin molecules in polyubiquitinated histone H2A. Trout liver chromatin fragments. which had histone H1 removed, were digested with Staphylococcus aureus (V8 strain) protease which cleaves specifically on the carboxyl side of glutamic acid residues under the conditions used. The V8 protease readily degraded histone H2A and ubiquitinated (u) H2A at equivalent rates. One site in H2A and uH2A, the peptide bond between Glu 121 and Lys 122, was cleaved, yielding protein species cH2A and cuH2A, respectively. None of the other nucleosomal histones (H2B, H2A.Z, H3, and H4) including uH2B and uH2A.Z were sensitive to digestion. Trout liver histones cleaved with either V8 protease, histone H2A specific protease, or cyanogen bromide were resolved by two-dimensional gel electrophoresis and ubiquitinated peptides detected with anti-ubiquitin IgG. The results suggest that the major arrangement of ubiquitin in polyubiquitinated H2A is a chain of ubiquitin molecules joined to each other by isopeptide bonds to a ubiquitin molecule that is attached to the epsilon-amino group of lysine 119 of histone H2A.  相似文献   

13.
B Raboy  H A Parag    R G Kulka 《The EMBO journal》1986,5(5):863-869
[125I]Ubiquitin introduced into permeabilized hepatoma tissue culture (HTC) cells rapidly forms conjugates with endogenous proteins. A characteristic pattern of low mol. wt conjugates is obtained which includes the ubiquitinated histone, uH2A, and unknown molecular species with MrS of 14, 23, 26 (two bands) and 29 kd. A broad spectrum of higher mol. wt conjugates is also produced. The formation of all conjugates is absolutely dependent on ATP, and upon depletion of ATP they are rapidly broken down. The 14, 23 and 29 kd species are found in all subcellular fractions examined. uH2A is located exclusively in the nuclear fraction. The pair of 26 kd bands is specifically associated with the ribosome fraction. A considerable percentage of the higher mol. wt conjugates sediments with the small particle (100,000 g) fraction in the ultracentrifuge but is solubilized with deoxycholate, indicating that there are many membrane-associated conjugates. The pattern of ubiquitin conjugation in interphase and metaphase cells was compared. The incorporation of ubiquitin into uH2A was markedly reduced in metaphase cells whereas its incorporation into other low mol. wt conjugates and into high mol. wt conjugates was affected slightly, if at all. This shows that the known decrease of uH2A levels in metaphase is due to a specific effect on histone ubiquitination and not to a general decrease in ubiquitination activity or increase of isopeptidase activity. Changes in the levels of uH2A during mitosis measured by immunoblotting were similar to those estimated in permeabilized cells. These experiments indicate that permeabilized cells provide a useful approach to the study of rapidly turning over ubiquitin conjugates in mammalian cells.  相似文献   

14.
Restoration of functionally intact chromatin structure following DNA damage processing is crucial for maintaining genetic and epigenetic information in human cells. Here, we show the UV-induced uH2A foci formation in cells lacking XPC, DDB2, CSA or CSB, but not in cells lacking XPA, XPG or XPF indicating that uH2A incorporation relied on successful damage repair occurring through either GGR or TCR sub-pathway. In contrast, XPA, XPG or XPF were not required for formation of γH2AX foci in asynchronous cells. Notably, the H2A ubiquitin ligase Ring1B, a component of Polycomb repressor complex 1, did not localize at DNA damage sites. However, histone chaperone CAF-1 showed distinct localization to the damage sites. Knockdown of CAF-1 p60 abolished CAF-1 as well as uH2A foci formation. CAF-1 p150 was found to associate with NER factors TFIIH, RPA p70 and PCNA in chromatin. These data demonstrate that successful NER of genomic lesions and prompt CAF-1-mediated chromatin restoration link uH2A incorporation at the sites of damage repair within chromatin.  相似文献   

15.
Lysine succinylation (Ksucc) is an evolutionarily conserved and widespread post‐translational modification. Histone acetyltransferase 1 (HAT1) is a type B histone acetyltransferase, regulating the acetylation of both histone and non‐histone proteins. However, the role of HAT1 in succinylation modulation remains unclear. Here, we employ a quantitative proteomics approach to study succinylation in HepG2 cancer cells and find that HAT1 modulates lysine succinylation on various proteins including histones and non‐histones. HAT1 succinylates histone H3 on K122, contributing to epigenetic regulation and gene expression in cancer cells. Moreover, HAT1 catalyzes the succinylation of PGAM1 on K99, resulting in its increased enzymatic activity and the stimulation of glycolytic flux in cancer cells. Clinically, HAT1 is significantly elevated in liver cancer, pancreatic cancer, and cholangiocarcinoma tissues. Functionally, HAT1 succinyltransferase activity and the succinylation of PGAM1 by HAT1 play critical roles in promoting tumor progression in vitro and in vivo. Thus, we conclude that HAT1 is a succinyltransferase for histones and non‐histones in tumorigenesis.  相似文献   

16.
The process of meiosis reduces a diploid cell to four haploid gametes and is accompanied by extensive recombination. Thus, the dynamics of chromatin during meiosis are significantly different than in mitotic cells. As spermatogenesis progresses, there is a widespread reorganization of the haploid genome followed by extensive DNA compaction. It has become increasingly clear that the dynamic composition of chromatin plays a critical role in the activities of enzymes and processes that act upon it. Therefore, an analysis of the role of histone variants and modifications in these processes may shed light upon the mechanisms involved and the control of chromatin structure in general. Histone variants such as histone H3.3, H2AX, and macroH2A appear to play key roles in the various stages of spermiogenesis, in addition to the specifically modulated acetylation of histone H4 (acH4), ubiquitination of histones H2A and H2B (uH2A, uH2B), and phosphorylation of histone H3 (H3p). This review will examine recent discoveries concerning the role of histone modifications and variants during meiosis and spermatogenesis.  相似文献   

17.
Activation of telomerase in human cancers is thought to be necessary to overcome the progressive loss of telomeric DNA that accompanies proliferation of normal somatic cells. According to this model, telomerase provides a growth advantage to cells in which extensive terminal sequence loss threatens viability. To test these ideas, we have examined telomere dynamics and telomerase activation during mammary tumorigenesis in mice carrying a mouse mammary tumor virus long terminal repeat-driven Wnt-1 transgene. We also analyzed Wnt-1-induced mammary tumors in mice lacking p53 function. Normal mammary glands, hyperplastic mammary glands, and mammary carcinomas all had the long telomeres (20 to 50 kb) typical of Mus musculus and did not show telomere shortening during tumor development. Nevertheless, telomerase activity and the RNA component of the enzyme were consistently upregulated in Wnt-1-induced mammary tumors compared with normal and hyperplastic tissues. The upregulation of telomerase activity and RNA also occurred during tumorigenesis in p53-deficient mice. The expression of telomerase RNA correlated strongly with histone H4 mRNA in all normal tissues and tumors, indicating that the RNA component of telomerase is regulated with cell proliferation. Telomerase activity in the tumors was elevated to a greater extent than telomerase RNA, implying that the enzymatic activity of telomerase is regulated at additional levels. Our data suggest that the mechanism of telomerase activation in mouse mammary tumors is not linked to global loss of telomere function but involves multiple regulatory events including upregulation of telomerase RNA in proliferating cells.  相似文献   

18.
Simon JA  Lange CA 《Mutation research》2008,647(1-2):21-29
EZH2 is the catalytic subunit of Polycomb repressive complex 2 (PRC2), which is a highly conserved histone methyltransferase that targets lysine-27 of histone H3. This methylated H3-K27 chromatin mark is commonly associated with silencing of differentiation genes in organisms ranging from plants to flies to humans. Studies on human tumors show that EZH2 is frequently over-expressed in a wide variety of cancerous tissue types, including prostate and breast. Although the mechanistic contributions of EZH2 to cancer progression are not yet determined, functional links between EZH2-mediated histone methylation and DNA methylation suggest partnership with the gene silencing machinery implicated in tumor suppressor loss. Here we review the basic molecular biology of EZH2 and the findings that implicate EZH2 in different cancers. We also discuss EZH2 connections to other silencing enzymes, such as DNA methyltransferases and histone deacetylases, and we consider progress on deciphering mechanistic consequences of EZH2 overabundance and its potential roles in tumorigenesis. Finally, we review recent findings that link EZH2 roles in stem cells and cancer, and we consider prospects for integrating EZH2 blockade into strategies for developing epigenetic therapies.  相似文献   

19.
20.
SMYD2 is a histone methyltransferase, which methylates both histone H3K4 as well as a number of non-histone proteins. Dysregulation of SMYD2 has been associated with several diseases including cancer. In the present study, we investigated whether and how SMYD2 might contribute to colorectal cancer. Increased expression levels of SMYD2 were detected in human and murine colon tumor tissues compared to tumor-free tissues. SMYD2 deficiency in colonic tumor cells strongly decreased tumor growth in two independent experimental cancer models. On a molecular level, SMYD2 deficiency sensitized colonic tumor cells to TNF-induced apoptosis and necroptosis without affecting cell proliferation. Moreover, we found that SMYD2 targeted RIPK1 and inhibited the phosphorylation of RIPK1. Finally, in a translational approach, pharmacological inhibition of SMYD2 attenuated colonic tumor growth. Collectively, our data show that SMYD2 is crucial for colon tumor growth and inhibits TNF-induced apoptosis and necroptosis.Subject terms: Colon cancer, Apoptosis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号