首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability.  相似文献   

2.
The present study is to investigate the brain activation associated with the informative value of negative feedback in rule acquisition. In each trial of a segmented Wisconsin Card Sorting Test, participants were provided with three reference cards and one target card, and were asked to match one of three reference cards to the target card based on a classification rule. Participants received feedback after each match. Participants would acquire the rule after one negative feedback (1-NF condition) or two successive negative feedbacks (2-NF condition). The functional magnetic resonance imaging (fMRI) results indicated that lateral prefrontal-to-parietal cortices were more active in the 2-NF condition than in the 1-NF condition. The activation in the right lateral prefrontal cortex and left posterior parietal cortex increased gradually with the amount of negative feedback. These results demonstrate that the informative value of negative feedback in rule acquisition might be modulated by the lateral prefronto-parietal loop.  相似文献   

3.
Bayesian inference of mixed models in quantitative genetics of crop species   总被引:1,自引:0,他引:1  
The objectives of this study were to implement a Bayesian framework for mixed models analysis in crop species breeding and to exploit alternatives for informative prior elicitation. Bayesian inference for genetic evaluation in annual crop breeding was illustrated with the first two half-sib selection cycles in a popcorn population. The Bayesian framework was based on the Just Another Gibbs Sampler software and the R2jags package. For the first cycle, a non-informative prior for the inverse of the variance components and an informative prior based on meta-analysis were used. For the second cycle, a non-informative prior and an informative prior defined as the posterior from the non-informative and informative analyses of the first cycle were used. Regarding the first cycle, the use of an informative prior from the meta-analysis provided clearly distinct results relative to the analysis with a non-informative prior only for the grain yield. Regarding the second cycle, the results for the expansion volume and grain yield showed differences among the three analyses. The differences between the non-informative and informative prior analyses were restricted to variance components and heritability. The correlations between the predicted breeding values from these analyses were almost perfect.  相似文献   

4.
Mai X  Tardif T  Doan SN  Liu C  Gehring WJ  Luo YJ 《PloS one》2011,6(4):e18774
To investigate the processing of positive vs. negative feedback in children aged 4-5 years, we devised a prize-guessing game that is analogous to gambling tasks used to measure feedback-related brain responses in adult studies. Unlike adult studies, the feedback-related negativity (FRN) elicited by positive feedback was as large as that elicited by negative feedback, suggesting that the neural system underlying the FRN may not process feedback valence in early childhood. In addition, positive feedback, compared with negative feedback, evoked a larger P1 over the occipital scalp area and a larger positive slow wave (PSW) over the right central-parietal scalp area. We believe that the PSW is related to emotional arousal and the intensive focus on positive feedback that is present in the preschool and early school years has adaptive significance for both cognitive and emotional development during this period.  相似文献   

5.
The present study investigated the relationship between three different measures related to the affective empathy: facial expression detection in response to different emotional patterns (positive vs. negative), personal response to empathic scale [Balanced Emotional Empathy Scale (BEES)], and dorsal medial prefrontal cortex (dMPFC) contribution to mediate the facial detection task. Nineteen subjects took part in the study and they were required to recognize facial expression of emotions, after having empathized with these emotional cues. Repeated Transcranial Magnetic Stimulation (rTMS) method was used in the present research in order to produce a temporary virtual disruption of dMPFC activity. dMPFC disruption induced a worse performance, especially in response to negative expressions (i.e. anger and fear). High-BEES subjects paid a higher cost after frontal brain perturbation: they showed to be unable to correctly detect facial expressions more than low-BEES. Moreover, a “negative valence effect” was observed only for high-BEES, and it was probably related with their higher impairment to recognize negative more than positive expressions. dMPFC was found to support emotional facial expression recognition in an empathic condition, with a specific increased responsiveness for negative-valenced faces. The contribution of this research was discussed to explain the mechanisms underlying affective empathy based on rTMS application.  相似文献   

6.
Avoidance behavior is a critical component of many psychiatric disorders, and as such, it is important to understand how avoidance behavior arises, and whether it can be modified. In this study, we used empirical and computational methods to assess the role of informational feedback and ambiguous outcome in avoidance behavior. We adapted a computer-based probabilistic classification learning task, which includes positive, negative and no-feedback outcomes; the latter outcome is ambiguous as it might signal either a successful outcome (missed punishment) or a failure (missed reward). Prior work with this task suggested that most healthy subjects viewed the no-feedback outcome as strongly positive. Interestingly, in a later version of the classification task, when healthy subjects were allowed to opt out of (i.e. avoid) responding, some subjects (“avoiders”) reliably avoided trials where there was a risk of punishment, but other subjects (“non-avoiders”) never made any avoidance responses at all. One possible interpretation is that the “non-avoiders” valued the no-feedback outcome so positively on punishment-based trials that they had little incentive to avoid. Another possible interpretation is that the outcome of an avoided trial is unspecified and that lack of information is aversive, decreasing subjects’ tendency to avoid. To examine these ideas, we here tested healthy young adults on versions of the task where avoidance responses either did or did not generate informational feedback about the optimal response. Results showed that provision of informational feedback decreased avoidance responses and also decreased categorization performance, without significantly affecting the percentage of subjects classified as “avoiders.” To better understand these results, we used a modified Q-learning model to fit individual subject data. Simulation results suggest that subjects in the feedback condition adjusted their behavior faster following better-than-expected outcomes, compared to subjects in the no-feedback condition. Additionally, in both task conditions, “avoiders” adjusted their behavior faster following worse-than-expected outcomes, and treated the ambiguous no-feedback outcome as less rewarding, compared to non-avoiders. Together, results shed light on the important role of ambiguous and informative feedback in avoidance behavior.  相似文献   

7.
A considerable literature on attribution theory has shown that healthy individuals exhibit a positivity bias when inferring the causes of evaluative feedback on their performance. They tend to attribute positive feedback internally (e.g., to their own abilities) but negative feedback externally (e.g., to environmental factors). However, all empirical demonstrations of this bias suffer from at least one of the three following drawbacks: First, participants directly judge explicit causes for their performance. Second, participants have to imagine events instead of experiencing them. Third, participants assess their performance only after receiving feedback and thus differences in baseline assessments cannot be excluded. It is therefore unclear whether the classically reported positivity bias generalizes to setups without these drawbacks. Here, we aimed at establishing the relevance of attributions for decision-making by showing an attribution-related positivity bias in a decision-making task. We developed a novel task, which allowed us to test how participants changed their evaluations in response to positive and negative feedback about performance. Specifically, we used videos of actors expressing different facial emotional expressions. Participants were first asked to evaluate the actors’ credibility in expressing a particular emotion. After this initial rating, participants performed an emotion recognition task and did—or did not—receive feedback on their veridical performance. Finally, participants re-rated the actors’ credibility, which provided a measure of how they changed their evaluations after feedback. Attribution theory predicts that participants change their evaluations of the actors’ credibility toward the positive after receiving positive performance feedback and toward the negative after negative performance feedback. Our results were in line with this prediction. A control condition without feedback showed that correct or incorrect performance alone could not explain the observed positivity bias. Furthermore, participants’ behavior in our task was linked to the most widely used measure of attribution style. In sum, our findings suggest that positive and negative performance feedback influences the evaluation of task-related stimuli, as predicted by attribution theory. Therefore, our study points to the relevance of attribution theory for feedback processing in decision-making and provides a novel outlook for decision-making biases.  相似文献   

8.
Self-evaluation plays an important role in adaptive functioning and is a process that is typically impaired in patients with schizophrenia. Underlying neural mechanisms for this dysfunction may be associated with manifested psychosis. However, the brain substrates underlying this deficit are not well known. The present study used brain blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) and gray matter voxel-based morphometry to explore the functional and structural brain correlates of self-evaluation deficits in schizophrenia. Eighteen patients with schizophrenia and 17 healthy controls were recruited and asked to judge whether a set of personality-trait adjectives were appropriate for describing themselves, a familiar other, or whether the adjectives were of positive or negative valence. Patients had slower response times for negative trait attributions than controls did; responses to positive trait attributions were faster than those for negative traits among the patient group, while no differences were observed in the control group. Control subjects showed greater activation within the dorsal medial prefrontal cortex (dMPFC) and the anterior cingulate cortex (ACC) than the patient group during the self-evaluation > semantic positivity-evaluation contrast. Patients showed greater activation mainly within the posterior cingulate gyrus (PCC) as compared to controls for the other-evaluation > semantic positivity-evaluation contrast. Furthermore, gray matter volume was reduced in the MPFC, temporal lobe, cuneus, and the dorsal lateral prefrontal cortex (DLPFC) among the patient group when compared to controls. The present study adds to previous findings regarding self- and other-referential processing in schizophrenia, providing support for neurobiological models of self-reflection impairment.  相似文献   

9.
The neural correlates of lying about affective information were studied using a functional magnetic resonance imaging (fMRI) methodology. Specifically, 13 healthy right-handed Chinese men were instructed to lie about the valence, positive or negative, of pictures selected from the International Affective Picture System (IAPS) while their brain activity was scanned by a 3T Philip Achieva scanner. The key finding is that the neural activity associated with deception is valence-related. Comparing to telling the truth, deception about the valence of the affectively positive pictures was associated with activity in the inferior frontal, cingulate, inferior parietal, precuneus, and middle temporal regions. Lying about the valence of the affectively negative pictures, on the other hand, was associated with activity in the orbital and medial frontal regions. While a clear valence-related effect on deception was observed, common neural regions were also recruited for the process of deception about the valence of the affective pictures. These regions included the lateral prefrontal and inferior parietal regions. Activity in these regions has been widely reported in fMRI studies on deception using affectively-neutral stimuli. The findings of this study reveal the effect of valence on the neural activity associated with deception. Furthermore, the data also help to illustrate the complexity of the neural mechanisms underlying deception.  相似文献   

10.
Nicotine and tonic dopamine (DA) levels [as inferred by catechol‐O‐methyl tranferase (COMT) Val158Met genotype] interact to affect prefrontal processing. Prefrontal cortical areas are involved in response to performance feedback, which is impaired in smokers. We investigated whether there is a nicotine × COMT genotype interaction in brain circuitry during performance feedback of a reward task. We scanned 23 healthy smokers (10 Val/Val homozygotes, 13 Met allele carriers) during two fMRI sessions while subjects were wearing a nicotine or placebo patch. A significant nicotine × COMT genotype interaction for BOLD signal during performance feedback in cortico‐striatal areas was seen. Activation in these areas during the nicotine patch condition was greater in Val/Val homozygotes and reduced in Met allele carriers. During negative performance feedback, the change in activation in error detection areas such as anterior cingulate cortex (ACC)/superior frontal gyrus on nicotine compared to placebo was greater in Val/Val homozygotes compared to Met allele carriers. With transdermal nicotine administration, Val/Val homozygotes showed greater activation with performance feedback in the dorsal striatum, area associated with habitual responding. In response to negative feedback, Val/Val homozygotes had greater activation in error detection areas, including the ACC, suggesting increased sensitivity to loss with nicotine exposure. Although these results are preliminary due to small sample size, they suggest a possible neurobiological mechanism underlying the clinical observation that Val/Val homozygotes, presumably with elevated COMT activity compared to Met allele carriers and therefore reduced prefrontal DA levels, have poorer outcomes with nicotine replacement therapy .  相似文献   

11.
Mental and physical efforts, such as paying attention and lifting weights, have been shown to involve different brain systems. These cognitive and motor systems, respectively, include cortical networks (prefronto-parietal and precentral regions) as well as subregions of the dorsal basal ganglia (caudate and putamen). Both systems appeared sensitive to incentive motivation: their activity increases when we work for higher rewards. Another brain system, including the ventral prefrontal cortex and the ventral basal ganglia, has been implicated in encoding expected rewards. How this motivational system drives the cognitive and motor systems remains poorly understood. More specifically, it is unclear whether cognitive and motor systems can be driven by a common motivational center or if they are driven by distinct, dedicated motivational modules. To address this issue, we used functional MRI to scan healthy participants while performing a task in which incentive motivation, cognitive, and motor demands were varied independently. We reasoned that a common motivational node should (1) represent the reward expected from effort exertion, (2) correlate with the performance attained, and (3) switch effective connectivity between cognitive and motor regions depending on task demand. The ventral striatum fulfilled all three criteria and therefore qualified as a common motivational node capable of driving both cognitive and motor regions of the dorsal striatum. Thus, we suggest that the interaction between a common motivational system and the different task-specific systems underpinning behavioral performance might occur within the basal ganglia.  相似文献   

12.
In a memory task which required sustained attention, the positive or negative emotional state of an operator was created by introduction of two different types of feedback in accordance with the number of correct or wrong solutions. Standard and original indices were used for evaluation of the short-term variability of the heart rate (HRV) during performance. Changes in the HRV were observed only in the periods of performance with the failure type of the feedback. These changes reflected stabilization of heart bit-to-bit intervals. The original index of the fast HRV turned to be the most sensitive for testing HRV changes. Human autonomic reactions of such a kind during operator-like activity are known as a predictor for the functional state of dissatisfaction. This confirms the practical importance of application of the HRV indices for testing the ergonomic properties of the systems which control the operator-computer interaction.  相似文献   

13.
Sex hormones have actions in brain regions important for emotion, including the amygdala and prefrontal cortex. Previous studies have shown that cyclic sex hormones and hormone therapy after menopause modify responses to emotional events. Thus, this study examined whether hormone therapy modified emotion-induced brain activity in older women. Functional magnetic resonance imaging (fMRI), behavioral ratings (valence and arousal), and recognition memory were used to assess responses to emotionally laden scenes in older women currently using hormone therapy (HT) and women not currently using hormone therapy (NONE). We hypothesized that hormones would affect the amount or persistence of emotion-induced brain activity in the amygdala and ventrolateral prefrontal cortex (VLPFC). However, hormone therapy did not affect brain activity with the exception that NONE women showed a modest increase over time in amygdala activity to positive scenes. Hormone therapy did not affect behavioral ratings or memory for emotional scenes. The results were similar when women were regrouped based on whether they had ever used hormone therapy versus had never used hormone therapy. These results suggest that hormone therapy does not modify emotion-induced brain activity, or its persistence, in older women.  相似文献   

14.
《Hormones and behavior》2010,57(5):539-547
Sex hormones have actions in brain regions important for emotion, including the amygdala and prefrontal cortex. Previous studies have shown that cyclic sex hormones and hormone therapy after menopause modify responses to emotional events. Thus, this study examined whether hormone therapy modified emotion-induced brain activity in older women. Functional magnetic resonance imaging (fMRI), behavioral ratings (valence and arousal), and recognition memory were used to assess responses to emotionally laden scenes in older women currently using hormone therapy (HT) and women not currently using hormone therapy (NONE). We hypothesized that hormones would affect the amount or persistence of emotion-induced brain activity in the amygdala and ventrolateral prefrontal cortex (VLPFC). However, hormone therapy did not affect brain activity with the exception that NONE women showed a modest increase over time in amygdala activity to positive scenes. Hormone therapy did not affect behavioral ratings or memory for emotional scenes. The results were similar when women were regrouped based on whether they had ever used hormone therapy versus had never used hormone therapy. These results suggest that hormone therapy does not modify emotion-induced brain activity, or its persistence, in older women.  相似文献   

15.

Background

While hemispheric specialization of language processing is well established, lateralization of emotion processing is still under debate. Several conflicting hypotheses have been proposed, including right hemisphere hypothesis, valence asymmetry hypothesis and region-specific lateralization hypothesis. However, experimental evidence for these hypotheses remains inconclusive, partly because direct comparisons between hemispheres are scarce.

Methods

The present fMRI study systematically investigated functional lateralization during affective stimulus processing in 36 healthy participants. We normalized our functional data on a symmetrical template to avoid confounding effects of anatomical asymmetries. Direct comparison of BOLD responses between hemispheres was accomplished taking two approaches: a hypothesis-driven region of interest analysis focusing on brain areas most frequently reported in earlier neuroimaging studies of emotion; and an exploratory whole volume analysis contrasting non-flipped with flipped functional data using paired t-test.

Results

The region of interest analysis revealed lateralization towards the left in the medial prefrontal cortex (BA 10) during positive stimulus processing; while negative stimulus processing was lateralized towards the right in the dorsolateral prefrontal cortex (BA 9 & 46) and towards the left in the amygdala and uncus. The whole brain analysis yielded similar results and, in addition, revealed lateralization towards the right in the premotor cortex (BA 6) and the temporo-occipital junction (BA 19 & 37) during positive stimulus processing; while negative stimulus processing showed lateralization towards the right in the temporo-parietal junction (BA 37,39,42) and towards the left in the middle temporal gyrus (BA 21).

Conclusion

Our data suggests region-specific functional lateralization of emotion processing. Findings show valence asymmetry for prefrontal cortical areas and left-lateralized negative stimulus processing in subcortical areas, in particular, amygdala and uncus.  相似文献   

16.
The pattern of cortical functional connectivity in the source space was studied in a group of righthanded adult participants (N = 44:17 women, 27 men, aged M = 29.61 ± 6.45 years). Participants retained the traces of realistic pictures of positive, neutral, and negative emotional valences in their working memory (WM) while performing the same-different task. Within the framework of this task, participants had to compare the initial picture against a target picture that followed after a specified delay. The coherence (COH) between the pairs of cortical sources chosen in advance according to fMRI data was estimated in the theta frequency range for the period preceding the initial stimulus, during the retention of the initial stimulus in WM, and during the rest interval between successive trials. Two distinct sets of functional links were found. The links of the first type that presumably reflected the involvement of sustained attention were between the dorsal anterior cingulate cortex, the prefrontal areas, and temporal areas of the right hemispheres. When compared to the rest period, the links of this type showed strengthening not only during the retention period but also during the period preceding the initial picture. The links of the second type presumably reflected a progressive neocortex-to-hippocampus functional integration with increasing memory load and strengthened exclusively during the retention period. These links were between the parietal, temporal and prefrontal cortices in the lateral surface of both hemispheres with the additional inclusion of the posterior cingulate cortex and the medial parietal cortex in the left hemisphere. The impact of emotional valence on the strength and topography of the functional links of the second type was found. In the left hemisphere, the increase of strength of cortical interaction was more pronounced for the pictures of positive valence than for the pictures of either neutral or negative valences. When compared to the pictures of neutral valence, the retention of pictorial information of both positive and negative valence showed some extraneous integration of the cortical areas for the theta rhythm. This finding might be related to the additional load exerted by emotionally colored pictures onto the mechanisms of short-time retention of visual information.  相似文献   

17.
Odor context can affect the recognition of facial expressions. However, there is no evidence to date that odor can regulate the processing of emotional words conveyed by visual words. An emotional word recognition task was combined with event-related potential technology. Briefly, 49 adults were randomly divided into three odor contexts (pleasant odor, unpleasant odor, and no odor) to judge the valence of emotional words (positive, negative, and neutral). Both behavioral and Electroencephalography (EEG) data were collected. Both the pleasant odor and unpleasant odor contexts shortened the response time of the subjects to emotional words. In addition, negative words induced greater amplitudes of early posterior negativity (EPN) and late positive potential (LPP) than the positive and neutral words. However, the neutral words induced a larger N400 amplitude than the positive and negative words. More importantly, the processing of emotional words was found to be modulated by external odor contexts. For example, during the earlier (P2) processing stages, pleasant and unpleasant odor contexts induced greater P2 amplitudes than the no odor context. In the unpleasant odor context, negative words with the same odor valence induced greater P2 amplitudes than the positive words. During the later (N400) stages, various regions of the brain regions exhibited different results. For example, in the left and right frontal areas of the brain, exposure to positive words in a pleasant odor context resulted in a smaller N400 amplitude than exposure to neutral words in the same context. Meanwhile, in the left and right central regions, emotional words with the same valence as pleasant or unpleasant odor contexts elicited the minimum N400 amplitude. Individuals are very sensitive to emotional information. With deeper processing, different cognitive processes are reflected and they can be modulated by external odors. In the early and late stages of word processing, both pleasant and unpleasant odor contexts exhibited an undifferentiated dominance effect and could specifically modulate affectively congruent words.  相似文献   

18.
Both appetitive and aversive outcomes can reinforce animal behavior. It is not clear, however, whether the opposing kinds of reinforcers are processed by specific or common neural mechanisms. To investigate this issue, we studied macaque monkeys that performed a memory-guided saccade task for three different outcomes, namely delivery of liquid reward, avoidance of air puff, and feedback sound only. Animals performed the task best in rewarded trials, intermediately in aversive trials, and worst in sound-only trials. Most task-related activity in lateral prefrontal cortex was differentially influenced by the reinforcers. Aversive avoidance had clear effects on some prefrontal neurons, although the effects of rewards were more common. We also observed neurons modulated by both positive and negative reinforcers, reflecting reinforcement or attentional processes. Our results demonstrate that information about positive and negative reinforcers is processed differentially in prefrontal cortex, which could contribute to the role of this structure in goal-directed behavior.  相似文献   

19.
Although the random forest classification procedure works well in datasets with many features, when the number of features is huge and the percentage of truly informative features is small, such as with DNA microarray data, its performance tends to decline significantly. In such instances, the procedure can be improved by reducing the contribution of trees whose nodes are populated by non-informative features. To some extent, this can be achieved by prefiltering, but we propose a novel, yet simple, adjustment that has demonstrably superior performance: choose the eligible subsets at each node by weighted random sampling instead of simple random sampling, with the weights tilted in favor of the informative features. This results in an 'enriched random forest'. We illustrate the superior performance of this procedure in several actual microarray datasets.  相似文献   

20.
Exercise training produces a vast array of physiological adaptations, ranging from changes in metabolism to muscle mitochondrial biogenesis. Researchers studying the physiological effects of exercise often use animal models that employ forced exercise regimens that include aversive motivation, which could activate the stress response. This study examined the effect of forced treadmill running (8 wk) on several physiological systems that are sensitive to training and stress. Forced treadmill running produced both positive and negative physiological adaptations. Indicative of positive training adaptations, exercised male Sprague-Dawley rats had a decrease in body weight gain and an increase in muscle citrate synthase activity compared with sedentary controls. In contrast, treadmill running also resulted in the potentially negative adaptations of adrenal hypertrophy, thymic involution, decreased serum corticosteroid binding globulin, elevated lymphocyte nitrite concentrations, suppressed lymphocyte proliferation, and suppressed antigen-specific IgM. Such alterations in neuroendocrine tissues and immune responses are commonly associated with chronic stress. Thus treadmill running produces both positive training adaptations and potentially negative adaptations that are indicative of chronic stress. Researchers employing forced activity need to be aware that this type of exercise procedure also produces physiological adaptations indicative of chronic stress and that these changes could potentially impact other measures of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号