首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel 5,6-diarylimidazo[2,1-b][1,3]thiazoles bearing an amine substituent at the imidazothiazole 2-position have been synthesized and evaluated as anticoccidial agents in both in vitro and in vivo assays. Both subnanomolar in vitro activity and broad spectrum in vivo potency were detected for several compounds, particularly compound 10.  相似文献   

2.
We used in vivo phosphorus magnetic resonance spectroscopy (31P-MRS) to study the effect of CoQ10 on the efficiency of brain and skeletal muscle mitochondrial respiration in ten patients with mitochondrial cytopathies. Before CoQ, brain [PCr] was remarkably lower in patients than in controls, while [Pi] and [ADP] were higher. Brain cytosolic free [Mg2+] and delta G of ATP hydrolysis were also abnormal in all patients. MRS also revealed abnormal mitochondrial function in the skeletal muscles of all patients, as shown by a decreased rate of PCr recovery from exercise. After six-months of treatment with CoQ (150 mg/day), all brain MRS-measurable variables as well as the rate of muscle mitochondrial respiration were remarkably improved in all patients. These in vivo findings show that treatment with CoQ in patients with mitochondrial cytopathies improves mitochondrial respiration in both brain and skeletal muscles, and are consistent with Lenaz's view that increased CoQ concentration in the mitochondrial membrane increases the efficiency of oxidative phosphorylation independently of enzyme deficit.  相似文献   

3.
A series of 2,6-disubstituted and 2,5,6-trisubstituted imidazo[2,1-b][1,3,4]thiadiazoles were synthesized, the structures of the compounds were elucidated and screened for antitubercular activity against Mycobacterium tuberculosis H37Rv using the BACTEC 460 radiometric system, antibacterial activity against Escherichia coli and Bacillus cirrhosis, and antifungal activity against Aspergillus niger and Penicillium wortmanni. Among the tested compounds 2-(2-furyl)-6-phenylimidazo[2,1-b][1,3,4] thiadiazole-5-carbaldehyde (6c) and (2-cyclohexyl-6-phenylimidazo[2,1-b][1,3,4]thiadiazol-5-yl)methanol (7a) have shown the highest (100%) inhibitory activity. Compounds 6a, 6b, 7c, and 8a exhibited moderate antitubercular activity with percentage inhibition 36, 30, 15, and 20, respectively, at a MIC of >6.25 microg/ml.  相似文献   

4.
New series of 2(or 3)-arylmethylenenaphtho[2,1-b]furan-3(or 2)-ones were synthesized, characterized and tested for anticancer properties in vitro. The target compounds were prepared by Knoevenagel coupling between the naphthofuranones 3, 28-30 and formyl derivatives. 2-(4-Oxo-1-benzopyran-3-ylmethylene)naphtho[2,1-b]furan-3-one 36 was the most active compound (IC50 (L1210) = 1.6 microM). These compounds were also evaluated, in an independent manner, as inhibitors of Src protein tyrosine kinase, but only minor activity was observed.  相似文献   

5.
The commonest mitochondrial diseases are probably those impairing the function of complex I of the respiratory electron transport chain. Such complex I impairment may contribute to various neurodegenerative disorders e.g. Parkinson's disease. In the following, using hepatocytes as a model cell, we have shown for the first time that the cytotoxicity caused by complex I inhibition by rotenone but not that caused by complex III inhibition by antimycin can be prevented by coenzyme Q (CoQ1) or menadione. Furthermore, complex I inhibitor cytotoxicity was associated with the collapse of the mitochondrial membrane potential and reactive oxygen species (ROS) formation. ROS scavengers or inhibitors of the mitochondrial permeability transition prevented cytotoxicity. The CoQ1 cytoprotective mechanism required CoQ1 reduction by DT-diaphorase (NQO1). Furthermore, the mitochondrial membrane potential and ATP levels were restored at low CoQ1 concentrations (5 microM). This suggests that the CoQ1H2 formed by NQO1 reduced complex III and acted as an electron bypass of the rotenone block. However cytoprotection still occurred at higher CoQ1 concentrations (>10 microM), which were less effective at restoring ATP levels but readily restored the cellular cytosolic redox potential (i.e. lactate: pyruvate ratio) and prevented ROS formation. This suggests that CoQ1 or menadione cytoprotection also involves the NQO1 catalysed reoxidation of NADH that accumulates as a result of complex I inhibition. The CoQ1H2 formed would then also act as a ROS scavenger.  相似文献   

6.
A series of pyrazino[2,1-b]isoquinoline and 6,15-iminoisoquino[3,2-b]-3-benzazocine compounds related to renieramycins, cribrostatin 4, and phthalascidin was synthesized and their in vitro cytotoxic activities were evaluated against three human cancer cell lines. Pyrazino[2,1-b]isoquinolines, 6,15-iminoisoquino[3,2-b]-3-benzazocines, and other more complex octacyclic compounds have been obtained and derived to precursors of iminium ion species. Hydrogenolysis of the lactam function in pentacyclic compounds gave 1-(3-isoquinolyl)isoquinolines. The micromolar cytotoxic activity of representative structures was apparently uninfluenced by the ability to generate intermediates which would permit covalent bonding to DNA.  相似文献   

7.
Using dehydroepiandrosterone as the starting material, we have synthesized a series of steroid analogs possessing a D-ring fused with heterocycles which are pyridine, imidazo [2,1-b]thiazoles or substituted thiazole imines. All the final structures are first reported and identified by NMR and MS spectroscopys, the yields of these products are moderate to good and the reaction conditions are mild. The cytotoxicity of the synthesized compounds against EC-109(human esophageal carcinoma), EC-9706(human esophageal carcinoma), MGC-803(human gastric carcinoma) were investigated.  相似文献   

8.
Herein we describe the synthesis of 1,2,4-triazolyl-3-thione;1,3,4-oxadiazole, and imidazo[2,1-b]thiazole derivatives from carbohydrates. The antiviral activity of these compounds was tested against Dengue and Junin virus (the etiological agent of Argentine hemorrhagic fever). The 3-(p-bromobenzoyl)-5-(1,2-O-isopropylidene-3-O-methyl-alpha-d-xylofuranos-5-ulos-5-yl)imidazo[2,1-b]thiazole was able to inhibit the replication of both viruses in Vero cells at concentration significantly lower than the CC(50).  相似文献   

9.
Several indolo[2,1-b]quinazoline-6,12-dione (tryptanthrin) derivatives exhibited remarkable activity at concentrations below 100 ng/mL when tested against in vitro Leishmania donovani amastigotes. The in vitro toxicity studies indicate that the compounds are fairly well tolerated in both macrophage and neuronal lines. An analysis based on qualitative and quantitative structure-activity relationship studies between in vitro antileishmanial activity and molecular electronic structure of 27 analogues of indolo[2,1-b]quinazoline-6,12-dione is presented here by using a combination of semi-empirical AM1 quantum chemical, cyclic voltammetry and a pharmacophore generation (CATALYST) methods. A modest to good correlation is observed between activity and a few calculated molecular properties such as molecular density, octanol-water partition coefficient, molecular orbital energies, and redox potentials. Electron transfer seems to be a plausible path in the mechanism of action of the compounds. A pharmacophore generated by using the 3-D QSAR of CATALYST produced a fairly accurate predictive model of antileishmanial activity of the tryptanthrins. The validity of the pharmacophore model extends to structurally different class of compounds that could open new frontiers for study. The carbonyl group of the five- and six-membered rings in the indolo[2,1-b]quinazoline-6,12-dione skeleton and the electron transfer ability to the carbonyl atom appear to be crucial for activity.  相似文献   

10.
The permeability transition pore (PTP) is a mitochondrial channel whose opening causes the mitochondrial membrane potential (deltapsi) collapse that leads to apoptosis. Some ubiquinone analogues have been demonstrated previously to modulate the PTP open-closed transition in isolated mitochondria and thought to act through a common PTP-binding site rather than through oxidation-reduction reactions. We have demonstrated recently both in vitro and in vivo that the ubiquitous free radical scavenger and respiratory chain coenzyme Q10 (CoQ10) prevents keratocyte apoptosis induced by excimer laser irradiation more efficiently than other antioxidants. On this basis, we hypothesized that the antiapoptotic property of CoQ10 could be independent of its free radical scavenging ability and related to direct inhibition of PTP opening. In this study, we have verified this hypothesis by evaluating the antiapoptotic effects of CoQ10 in response to apoptotic stimuli, serum starvation, antimycin A, and ceramide, which do not generate free radicals, in comparison to control, free radical-generating UVC irradiation. As hypothesized, CoQ10 dramatically reduced apoptotic cell death, attenuated ATP decrease, and hindered DNA fragmentation elicited by all apoptotic stimuli. This was accompanied by inhibition of mitochondrial depolarization, cytochrome c release, and caspase 9 activation. Because these events are consequent to mitochondrial PTP opening, we suggest that the antiapoptotic activity of CoQ10 could be related to its ability to prevent this phenomenon.  相似文献   

11.
The mutagenic activities of 5 newly synthesized naphthofurans were analysed in two in vitro cytogenetic assays: the metaphase chromosomal aberration assay and the anaphase telophase bridge-fragment assay. Both assays were conducted using V79 Chinese hamster cells. The compounds included: 2-nitro-7-methoxynaphtho[2,1-b]furan (A), 2-nitro-8-methoxynaphtho[2,1-b]furan (B), 2-nitro-naphtho[2,1-b]furan (C), 2-nitro-7-bromonaphtho[2,1-b]furan (D) and 7-methoxynaphtho[2,1-b]furan (E). The cells were treated with 3 concentrations (0.1, 0.2 and 0.4 microgram/ml) of each compound, in the dose range already tested in studies on the mutagenic properties of the same compounds realised with other systems. The highest concentration, only, was used in the anaphase-telophase assay. In the first approach, compounds A, B and C were active while compounds D and E did not increase significantly the aberration frequency above that of the DMSO controls. The results were confirmed in the second approach. They demonstrated that the two studies were complementary. Based on their genotoxic activities, the 5 compounds were ranked in the following decreasing order of potency: A congruent to B much greater than C greater than D congruent to E congruent to DMSO; which is comparable to the ranking order obtained in different in vitro mutagenic and carcinogenic assays. All these activities are closely related to the highly specific molecular structure of each compound, particularly to the nature and position of the different substituents introduced on the skeleton.  相似文献   

12.
Cyclosporin A induces closure of the mitochondrial permeability transition pore. We aimed to investigate whether this closure results in concomitant increases in mitochondrial membrane potential (DeltaPsim) and the production of reactive oxygen species. Fluorescent probes were used to assess DeltaPsim (JC-1, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl-carbocyanine iodide), reactive oxygen species [DCF, 5- (and 6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester] and [Ca2+][Fluo-3, glycine N-[4-[6-[(acetyloxy)methoxy]-2,7-dichloro-3-oxo-3H-xanthen-9-yl]-2-[2-[2-[bis[2-[(acetyloxy)methoxy]-2-oxyethyl]amino]-5-methylphenoxy]ethoxy]phenyl]-N-[2-[(acetyloxy)methoxy]-2-oxyethyl]-(acetyloxy)methyl ester] in human kidney cells (HK-2 cells) and in a line of human small cell carcinoma cells (GLC4 cells), because these do not express cyclosporin A-sensitive P-glycoprotein. We used transfected GLC4 cells expressing P-glycoprotein as control for GLC4 cells. NIM811 (N-methyl-4-isoleucine-cyclosporin) and PSC833 (SDZ-PSC833) were applied as selective mitochondrial permeability transition pore and P-glycoprotein blockers, respectively. To study the effect of cyclosporin A on mitochondrial function, we isolated mitochondria from fresh pig livers. Cyclosporin A and PSC833 induced a more than two-fold increase in JC-1 fluorescence in HK-2 cells, whereas NIM811 had no effect. None of the three substances induced a significant increase in JC-1 fluorescence in GLC4 cells. Despite this, cyclosporin A, NIM811 and PSC833 induced a 1.5-fold increase in DCF fluorescence (P<0.05) and a two-fold increase in Fluo-3 fluorescence (P<0.05). Studies in isolated mitochondria showed that blockage of mitochondrial permeability transition pores by cyclosporin A affected neither DeltaPsim, ATP synthesis, nor respiration rate. The mitochondrial permeability transition pore blockers cyclosporin A and NIM811, but also the non-mitochondrial permeability transition pore blocker PSC833, induced comparable degrees of reactive oxygen species production and cytosolic [Ca2+]. Neither mitochondria, effects on P-glycoprotein nor inhibition of calcineurin therefore play a role in cyclosporin A-induced oxidative stress and disturbed Ca2+ homeostasis.  相似文献   

13.
The effects of gold(I) complexes (auranofin, triethylphosphine gold and aurothiomalate), gold(III) complexes ([Au(2,2'-diethylendiamine)Cl]Cl(2), [(Au(2-(1,1-dimethylbenzyl)-pyridine) (CH(3)COO)(2)], [Au(6-(1,1-dimethylbenzyl)-2,2'-bipyridine)(OH)](PF(6)), [Au(bipy(dmb)-H)(2,6-xylidine)](PF(6))), metal ions (zinc and cadmium acetate) and metal complexes (cisplatin, zinc pyrithione and tributyltin) on mitochondrial thioredoxin reductase and mitochondrial functions have been examined. Both gold(I) and gold(III) complexes are extremely efficient inhibitors of thioredoxin reductase showing IC(50) ranging from 0.020 to 1.42 microM while metal ions and complexes not containing gold are less effective, exhibiting IC(50) going from 11.8 to 76.0 microM. At variance with thioredoxin reductase, auranofin is completely ineffective in inhibiting glutathione peroxidase and glutathione reductase, while gold(III) compounds show some effect on glutathione peroxidase. The mitochondrial respiratory chain is scarcely affected by gold compounds while the other metal complexes and metal ions, in particular zinc ion and zinc pyrithione, show a more marked inhibitory effect that is reflected on a rapid induction of membrane potential decrease that precedes swelling. Therefore, differently from gold compounds, the various metal ions and metal complexes exert their effect on different targets indicating a lower specificity. It is concluded that gold compounds are highly specific inhibitors of mitochondrial thioredoxin reductase and this action influences other functions such as membrane permeability properties. Metal ions and metal complexes markedly inhibit the activity of thioredoxin reductase although to an extent lower than that of gold compounds. They also inhibit mitochondrial respiration, decrease membrane potential and, finally, induce swelling.  相似文献   

14.
The substituted chloroisoquinolinediones and pyrido[3,4-b]phenazinediones were synthesized, and the cytotoxic activity and topoisomerase II inhibitory activity of the prepared compounds were evaluated. Chloroisoquinolinediones have been prepared by the reported method employing 6,7-dichloroisoquinoline-5,8-dione. The cyclization to pyrido[3,4-b]phenazinediones was achieved by adding the aqueous sodium azide solution to the dimethylformamide solution of corresponding chloroisoquinoline-5,8-dione. The cytotoxicity of the synthesized compounds was evaluated by a SRB (Sulforhodamine B) assay against various cancer cell lines such as A549 (human lung cancer cell line), SNU-638 (human stomach cancer cell), Col2 (human colon cancer cell line), HT1080 (human fibrosarcoma cell line), and HL-60 (human leukemia cell line). Almost all the synthesized pyrido[3,4-b]phenazinediones showed greater cytotoxic potential than ellipticine (IC(50)=1.82-5.97 microM). In general, the cytotoxicity of the pyrido[3,4-b]phenazinediones was higher than that of the corresponding chloroisoquinolinediones. The caco-2 cell permeability of selected compounds was 0.62 x 10(-6)-35.3 x 10(-6)cm/s. The difference in cytotoxic activity among tested compounds was correlated with the difference in permeability to some degree. To further investigate the cytotoxic mechanism, the topoisomerase II inhibitory activity of the synthesized compounds was estimated by a plasmid cleavage assay. Most of compounds showed the topoisomerase II inhibitory activity (28-100%) at 200 microM. IC(50) values for the most active compound 6a were 0.082 microM. However, the compounds were inactive for DNA relaxation by topoisomerase I at 200 microM.  相似文献   

15.
In the present study, we have investigated the role of methoxy and nitro groups in the oxidative metabolism of naphtho[2,1-b]furan. Hepatic microsomes were used to investigate the aerobic metabolism of naphtho[2,1-b]furan (compound A), 2-nitro-naphtho[2,1-b]furan (compound B) and 7-methoxy-naphtho [2,1-b]furan (compound C) and comparison of the metabolites formed was made using HPCL analysis and NMR, mass and UV-visible spectrometry. The different metabolic pathways investigated were compared with the previously reported metabolism of 7-methoxy-2-nitro-naphtho[2,1-b]furan (compound D). Naphtho[2,1-b]furan yield metabolites of both the furan and benzene rings, while metabolites formed from 7-methoxy-naphtho[2,1-b]furan and 2-nitro-naphtho [2,1-b]furan were derived entirely as a result of enzymic attack on the first benzene ring.  相似文献   

16.
The commonest mitochondrial diseases are probably those impairing the function of complex I of the respiratory electron transport chain. Such complex I impairment may contribute to various neurodegenerative disorders e.g. Parkinson's disease. In the following, using hepatocytes as a model cell, we have shown for the first time that the cytotoxicity caused by complex I inhibition by rotenone but not that caused by complex III inhibition by antimycin can be prevented by coenzyme Q (CoQ 1 ) or menadione. Furthermore, complex I inhibitor cytotoxicity was associated with the collapse of the mitochondrial membrane potential and reactive oxygen species (ROS) formation. ROS scavengers or inhibitors of the mitochondrial permeability transition prevented cytotoxicity. The CoQ 1 cytoprotective mechanism required CoQ 1 reduction by DT-diaphorase (NQO 1 ). Furthermore, the mitochondrial membrane potential and ATP levels were restored at low CoQ 1 concentrations (5 &#119 M). This suggests that the CoQ 1 H 2 formed by NQO 1 reduced complex III and acted as an electron bypass of the rotenone block. However cytoprotection still occurred at higher CoQ 1 concentrations (>10 &#119 M), which were less effective at restoring ATP levels but readily restored the cellular cytosolic redox potential (i.e. lactate: pyruvate ratio) and prevented ROS formation. This suggests that CoQ 1 or menadione cytoprotection also involves the NQO 1 catalysed reoxidation of NADH that accumulates as a result of complex I inhibition. The CoQ 1 H 2 formed would then also act as a ROS scavenger.  相似文献   

17.
Effects of N-acylethanolamines (NAEs): N-arachidonoylethanolamine (anandamide), N-oleoylethanolamine and N-palmitoylethanolamine, on energy coupling and permeability of rat heart mitochondria were investigated. In nominally Ca2+-free media, these compounds exerted a weak protonophoric effect manifested by dissipation of the transmembrane potential and stimulation of resting state respiration. The strongest action was exhibited by N-arachidonoylethanolamine, followed by N-oleoylethanolamine, whereas N-palmitoylethanolamine was almost inactive. These protonophoric effects were resistant to cyclosporin A (CsA) and were much weaker than those of corresponding nonesterified fatty acids. In uncoupled mitochondria N-arachidonoylethanolamine and N-oleoylethanolamine partly inhibited mitochondrial respiration with glutamate and succinate but not with tetramethyl-p-phenylenediamine (TMPD) plus ascorbate as respiratory substrates. In mitochondria preloaded with small amounts of Ca2+, NAEs produced a much stronger dissipation of the membrane potential and a release of accumulated calcium, both effects being inhibited by CsA, indicative for opening of the mitochondrial permeability transition pore (PTP). Again, the potency of this action was N-arachidonoylethanolamine>N-oleoylethanolamine>N-palmitoylethanolamine. However, in spite of making the matrix space accessible to external [14C]sucrose, N-arachidonoylethanolamine and N-oleoylethanolamine resulted in only a limited swelling of mitochondria and diminished the rate of swelling produced by high Ca2+ load.  相似文献   

18.
A series of novel 9-substituted (2-(3H-imidazo[1,2-a]purin-3-yl)ethoxy)methylphosphonic and 4-substituted (2-(1H-imidazo[2,1-b]purin-1-yl)ethoxy)methylphosphonic acids as tricyclic etheno analogs of potent antivirals and cytostatics PMEG and PMEDAP was synthesized and evaluated for their biological activity. Most of the compounds showed modest activity against varicella-zoster virus (VZV) and human cytomegalovirus (HCMV) except for (2-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)ethoxy)methylphosphonic acid 8 which proved markedly active against VZV and HCMV. None of the compounds tested exhibited any significant cytostatic effect.  相似文献   

19.
Of a series of gramicidin A (gA) derivatives, we have earlier found the peptide [Glu1]gA exhibiting very low toxicity toward mammalian cells, although dissipating mitochondrial membrane potential with almost the same efficiency as gA. Substitution of glutamate for valine at position 1 of the gA amino acid sequence, which is supposed to interfere with the formation of ion-conducting gA channels via head-to-head dimerization, reduces both channel-forming potency of the peptide in planar lipid bilayer membranes and its photonophoric activity in unilamellar liposomes. Here, we compared [Glu1]gA and gA abilities to cause depolarization of the inner mitochondrial membrane in mitochondria and mitoplasts, the latter lacking the outer mitochondrial membrane. Importantly, much less gA was needed to decrease the membrane potential in mitoplasts than in mitochondria, whereas the depolarizing potency of [Glu1]gA was nearly the same in these systems. Moreover, in multilamellar liposomes, [Glu1]gA exhibited more pronounced protonophoric activity than gA, in contrast to the data for unilamellar liposomes. These results allowed us to conclude that [Glu1]gA has a much higher permeability between adjacent lipid membranes than gA. Therefore, the fraction of peptide molecules, reaching the inner mitochondrial membrane upon the addition to cells, is much higher for [Glu1]gA compared to gА. Under these conditions, the decreased cytotoxicity of [Glu1]gA could be associated with its low efficiency as a channel-former dissipating potassium and sodium ion gradients across plasma membrane. The present study highlighted the role of the ability to permeate among various biological membranes for intracellular efficiency of ionophores.  相似文献   

20.
A series of N-(2-anilino-pyridyl) linked 2-amino benzothiazoles (4a-n) and [1,2,4]triazolo [1,5-b]benzothiadiazine conjugates (5a-j) have been designed, synthesized and evaluated for their antiproliferative activity. Some of these compounds (4h-k, 4n, and 5e) have exhibited potent cytotoxicity specifically against human leukemia HL-60 cell lines with IC(50) values in the range of 0.08-0.70 μM. All these compounds were tested for their effects on the cell cycle perturbations and induction of apoptosis. Morphological evidences of apoptosis, including fragmentation of nuclei and inter nucleosomal DNA laddering formation were clearly observed after 24h exposure to compound 4i. Flow cytometry analysis revealed that compound 4i showed drastic cell cycle perturbations due to concentration dependant increase in the sub-G0 region which comprises of both the apoptotic and debris fraction, thus implying the extent of cell death. These compounds trigger the mitochondrial apoptotic pathway that results in the loss of mitochondrial membrane potential through activation of multiple caspases followed by activation of caspase-3, and finally cleavage of PARP. Further the mechanism of cell death was analysed by fluorescent microscopic analysis and also by scanning electron microscopy. The cytotoxicity of 4i correlated with induction of apoptosis, caspases activation and DNA damage and thus indicating the apoptotic pathway of anticancer effect of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号