首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In embryogenesis, coronary blood vessels are formed by vasculogenesis from epicardium-derived progenitors. Subsequently, growing or regenerating myocardium increases its vasculature by angiogenesis, forming new vessels from the pre-existing ones. Recently, cell therapies for myocardium ischemia that used different protocols have given promising results, using either extra-cardiac blood vessel cell progenitors or stimulating the cardiac angiogenesis. We have questioned whether cardiomyocytes could sustain both vasculogenesis and angiogenesis. We used a 3D culture model of tissue-like spheroids in co-cultures of cardiomyocytes supplemented either with endothelial cells or with bone marrow-derived mesenchymal stroma cells. Murine foetal cardiomyocytes introduced into non-adherent U-wells formed 3D contractile structures. They were coupled by gap junctions. Cardiomyocytes segregated inside the 3D structure into clumps separated by connective tissue septa, rich in fibronectin. Three vascular endothelial growth factor isoforms were produced (VEGF 120, 164 and 188). When co-cultured with human umbilical cord endothelial cells, vascular structures were produced in fibronectin-rich external layer and in radial septa, followed by angiogenic sprouting into the cardiomyocyte microtissue. Presence of vascular structures led to the maintenance of long-term survival and contractile capacity of cardiac microtissues. Conversely, bone marrow mesenchymal cells formed isolated cell aggregates, which progressively expressed the endothelial markers von Willebrand's antigen and CD31. They proceeded to typical vasculogenesis forming new blood vessels organised in radial pattern. Our results indicate that the in vitro 3D model of cardiomyocyte spheroids provides the two basic elements for formation of new blood vessels: fibronectin and VEGF. Within the myocardial environment, endothelial and mesenchymal cells can proceed to formation of new blood vessels either through angiogenesis or vasculogenesis, respectively.  相似文献   

2.
Vasculogenesis, the de novo growth of the primary vascular network from initially dispersed endothelial cells, is the first step in the development of the circulatory system in vertebrates. In the first stages of vasculogenesis, endothelial cells elongate and form a network-like structure, called the primary capillary plexus, which subsequently remodels, with the size of the vacancies between ribbons of endothelial cells coarsening over time. To isolate such intrinsic morphogenetic ability of endothelial cells from its regulation by long-range guidance cues and additional cell types, we use an in vitro model of human umbilical vein endothelial cells (HUVEC) in Matrigel. This quasi-two-dimensional endothelial cell culture model would most closely correspond to vasculogenesis in flat areas of the embryo like the yolk sac. Several studies have used continuum mathematical models to explore in vitro vasculogenesis: such models describe cell ensembles but ignore the endothelial cells' shapes and active surface fluctuations. While these models initially reproduce vascular-like morphologies, they eventually stabilize into a disconnected pattern of vascular "islands." Also, they fail to reproduce temporally correct network coarsening. Using a cell-centered computational model, we show that the endothelial cells' elongated shape is key to correct spatiotemporal in silico replication of stable vascular network growth. We validate our simulation results against HUVEC cultures using time-resolved image analysis and find that our simulations quantitatively reproduce in vitro vasculogenesis and subsequent in vitro remodeling.  相似文献   

3.
Adipose-derived stromal vascular fraction (SVF) is a heterogeneous cell source that contains endothelial cells, pericytes, smooth muscle cells, stem cells, and other accessory immune and stromal cells. The SVF cell population has been shown to support vasculogenesis in vitro as well vascular maturation in vivo. Matrigel, an extracellular matrix (ECM) mixture has been utilized in vitro to evaluate tube formation of purified endothelial cell systems. We have developed an in vitro system that utilizes freshly isolated SVF and ECM molecules both in pure form (fibrin, laminin, collagen) as well as premixed form (Matrigel) to evaluate endothelial tip cell formation, endothelial stalk elongation, and early stages of branching and inosculation. Freshly isolated SVF rat demonstrate cell aggregation and clustering (presumptive vasculogenesis) on Matrigel ECM within the first 36 h of seeding followed by tip cell formation, stalk cell formation, branching, and inosculation (presumptive angiogenesis) during the subsequent 4 days of culture. Purified ECM molecules (laminin, fibrin, and collagen) promote cell proliferation but do not recapitulate events seen on Matrigel. We have created an in vitro system that provides a functional assay to study the mechanisms of vasculogenesis and angiogenesis in freshly isolated SVF to characterize SVF’s blood vessel forming potential prior to clinical implantation.  相似文献   

4.
A dietary deficiency of vitamin A is associated with cardiovascular abnormalities in avian and murine systems. Retinoic acid (RA) is the active metabolite of vitamin A and whether it directly regulates mammalian blood vessel formation has not been determined and is investigated herein. We used mice rendered RA-deficient via targeted deletion of retinaldehyde dehydrogenase 2 (Raldh2(-/-)), the enzyme required to produce active RA in the embryo. Histological examination at E8.0-8.5, prior to cardiac function and systemic blood circulation, revealed that capillary plexi formed in Raldh2(-/-) yolk sacs and embryos, but were dilated, and not appropriately remodeled or patterned. Raldh2(-/-) endothelial cells exhibited significantly increased expression of phosphohistone 3 and decreased expression of p21 and p27, suggesting that RA is required to control endothelial cell cycle progression during early vascular development. Uncontrolled endothelial cell growth, in Raldh2(-/-) mutants, was associated with decreased endothelial cell maturation, disrupted vascular plexus remodeling and lack of later stages of vessel assembly, including mural cell differentiation. Maternally administrated RA restored endothelial cell cycle control and vascular patterning. Thus, these data indicate that RA plays a crucial role in mammalian vascular development; it is required to control endothelial cell proliferation and vascular remodeling during vasculogenesis.  相似文献   

5.
Connexin43 deficiency causes dysregulation of coronary vasculogenesis   总被引:3,自引:0,他引:3  
The connexin43 knockout (Cx43alpha1 KO) mouse dies at birth from outflow obstruction associated with infundibular pouches. To elucidate the origin of the infundibular pouches, we used microarray analysis to investigate gene expression changes in the pouch tissue. We found elevated expression of many genes encoding markers for vascular smooth muscle (VSM), endothelial cells, and fibroblasts, cell types that are epicardially derived and essential for coronary vasculogenesis. This was accompanied by increased expression of VEGF and genes in the TGFbeta and VEGF/Notch/Eph cell-signaling pathways known to regulate vasculogenesis/angiogenesis. Using immunohistochemistry and a VSM lacZ reporter gene, we confirmed an abundance of ectopic VSM and endothelial cells in the infundibular pouch and in some regions of the right ventricle forming secondary pouches. This was associated with distinct thinning of the compact myocardium. TUNEL labeling showed increased apoptosis in the pouch tissue, in agreement with the finding of altered expression of many apoptotic genes. Defects in vascular remodeling were indicated by a marked reduction in the branching complexity of the distal coronary arteries. In the near term KO mouse, we also observed a profusion of large coronary vascular plexuses subepicardially. This was associated with elevated epicardial expression of VEGF and abnormal epicardial cell morphology. Together, these observations indicate that dysregulated coronary vasculogenesis plays a pivotal role in formation of the infundibular pouches and suggests an essential role for Cx43alpha1 gap junctions in coronary vasculogenesis and vascular remodeling.  相似文献   

6.
Vasculogenesis is an important morphogenetic event for vascular tissue engineering and ischemic disease treatment. Stem and progenitor cells can contribute to vasculogenesis via endothelial differentiation and direct participation in blood vessel formation. In this study, we developed an implantable microfluidic device to facilitate formation of three-dimensional (3D) vascular structures by human endothelial progenitor cells (hEPCs). The microfluidic device was made of biodegradable poly(lactic-co-glycolic acid) (PLGA) using a microchannel patterned silicon wafer made by soft lithography. A collagen type I (Col I) hydrogel containing hEPCs filled the microfluidic channels to reconstitute a 3D microenvironment for facilitating vascular structure formation by hEPCs. The device seeded with hEPCs was implanted into the subcutaneous space of athymic mice and retrieved one and four weeks after implantation. Histology and immunohistochemistry revealed that hEPCs formed a 3D capillary network expressing endothelial cell-specific proteins in the channel of the PLGA microfluidic device. This result indicates that a 3D microscale extracellular matrix reconstituted in the microchannel can promote the endothelial differentiation of hEPCs and in turn hEPC-mediated vasculogenesis. The PLGA microfluidic device reported herein may be useful as an implantable tissue-engineering scaffold for vascularized tissue reconstruction and therapeutic angiogenesis.  相似文献   

7.
Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies   总被引:48,自引:0,他引:48  
Embryonic stem cells (ESC) have been established previously from the inner cell mass cells of mouse blastocysts. In suspension culture, they spontaneously differentiate to blood-island-containing cystic embryoid bodies (CEB). The development of blood vessels from in situ differentiating endothelial cells of blood islands, a process which we call vasculogenesis, was induced by injecting ESC into the peritoneal cavity of syngeneic mice. In the peritoneum, fusion of blood islands and formation of an in vivo-like primary capillary plexus occurred. Transplantation of ESC and ESC-derived complex and cystic embryoid bodies (ESC-CEB) onto the quail chorioallantoic membrane (CAM) induced an angiogenic response, which was directed by nonyolk sac endoderm structures. Neither yolk sac endoderm from ESC-CEB nor normal mouse yolk sac tissue induced angiogenesis on the quail CAM. Extracts from ESC-CEB stimulated the proliferation of capillary endothelial cells in vitro. Mitogenic activity increase during in vitro culture and differentiation of ESC. Almost all growth factor activity was associated with the cells. The ESC-CEB derived endothelial cell growth factor bound to heparin-sepharose. The identification of acidic fibroblast growth factor (FGF)in heparin-sepharose-purified material was accomplished by immunoblot experiments involving antibodies against acidic and basic FGF. We conclude that vasculogenesis, the development of blood vessels from in situ differentiating endothelial cells, and angiogenesis, the sprouting of capillaries from preexisting vessels are very early events during embryogenesis which can be studied using ESC differentiating in vitro. Our results suggest that vasculogenesis and angiogenesis are differently regulated.  相似文献   

8.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurrs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis. (Mol Cell Biochem 264: 51–61, 2004)  相似文献   

9.
Neovascularization is necessary for formation of the corpus luteum (CL) and includes angiogenesis and vasculogenesis. Vasculogenesis is the formation of new blood vessels by bone marrow-derived endothelial progenitor cells. Here we investigated whether vasculogenesis occurs in neovascularization during CL formation. Mice transplanted with bone marrow from transgenic mice expressing green fluorescent protein (GFP) were injected with equine chorionic gonadotropin and human chorionic gonadotropin (hCG) to induce ovulation and subsequent CL formation. Immunohistochemistry was performed on the ovaries obtained before hCG injection and at 6, 12, and 24 h after hCG injection using antibodies for CD34 or CD31 (an endothelial cell marker), platelet-derived growth factor receptor beta (PDGFR-beta, a pericyte marker), F4/80 (a macrophage marker), and GFP (a bone marrow-derived cell marker). Cells immunostained for CD34, PDGFR-beta, F4/80, and GFP were present in the theca cell layer of the preovulatory follicle before hCG injection. Each of these cell types invaded the granulosa cell layer after hCG injection, and a number of them were observed in the CL 24 h after hCG injection. Fluorescence-based immunohistochemistry or double immunohistochemical staining revealed that a few CD34/CD31-positive cells and PDGFR-beta-positive cells were also positive for GFP in the preovulatory follicle and CL, and that many of the GFP-positive cells recruited to the CL during CL formation were F4/80-positive macrophages. In conclusion, bone marrow-derived vascular progenitor cells and macrophages contribute to neovascularization during CL formation.  相似文献   

10.
11.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis.  相似文献   

12.
Endothelial progenitor cells: A source for therapeutic vasculogenesis?   总被引:16,自引:0,他引:16  
Angiogenesis has been defined as sprouting of blood vessels from pre-existing vascular structures. Risau and co-workers defined the term vasculogenesis while studying the formation of new blood vessels in embryoid bodies. This process is characterized by the recruitment of endothelial progenitor cells (EPC) to sites of new vessel formation with subsequent differentiation of EPC into mature endothelial cells, extensively proliferating in situ. Data from recent years provided evidence that EPC also exist in the adult and contribute to new vessel formation, a process called post-natal vasculogenesis. The existence of EPC has been convincingly shown in both, animals and humans. They represent a perfect cellular progenitor cell population for the ex vivo generation of EC, which in turn serve as cellular source for therapeutic vasculogenesis or tumor targeting. This review provides an overview on this hot topic of cellular-based therapeutic concepts and the therapeutic potential of ex vivo generated EPC.  相似文献   

13.
Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis) and remodeling (angiogenesis) come from a variety of biological pathways linked to endothelial cell (EC) behavior, extracellular matrix (ECM) remodeling and the local generation of chemokines and growth factors. Simulating these interactions at a systems level requires sufficient biological detail about the relevant molecular pathways and associated cellular behaviors, and tractable computational models that offset mathematical and biological complexity. Here, we describe a novel multicellular agent-based model of vasculogenesis using the CompuCell3D (http://www.compucell3d.org/) modeling environment supplemented with semi-automatic knowledgebase creation. The model incorporates vascular endothelial growth factor signals, pro- and anti-angiogenic inflammatory chemokine signals, and the plasminogen activating system of enzymes and proteases linked to ECM interactions, to simulate nascent EC organization, growth and remodeling. The model was shown to recapitulate stereotypical capillary plexus formation and structural emergence of non-coded cellular behaviors, such as a heterologous bridging phenomenon linking endothelial tip cells together during formation of polygonal endothelial cords. Molecular targets in the computational model were mapped to signatures of vascular disruption derived from in vitro chemical profiling using the EPA''s ToxCast high-throughput screening (HTS) dataset. Simulating the HTS data with the cell-agent based model of vascular development predicted adverse effects of a reference anti-angiogenic thalidomide analog, 5HPP-33, on in vitro angiogenesis with respect to both concentration-response and morphological consequences. These findings support the utility of cell agent-based models for simulating a morphogenetic series of events and for the first time demonstrate the applicability of these models for predictive toxicology.  相似文献   

14.
The correct development of blood vessels is crucial for all aspects of tissue growth and physiology in vertebrates. The formation of an elaborate hierarchically branched network of endothelial tubes, through either angiogenesis or vasculogenesis, relies on a series of coordinated morphogenic events, but how individual endothelial cells adopt specific phenotypes and how they coordinate their behaviour during vascular patterning is unclear. Recent progress in our understanding of blood vessel formation has been driven by advanced imaging techniques and detailed analyses that have used a combination of powerful in vitro, in vivo and in silico model systems. Here, we summarise these models and discuss their advantages and disadvantages. We then review the different stages of blood vessel development, highlighting the cellular mechanisms and molecular players involved at each step and focusing on cell specification and coordination within the network.  相似文献   

15.
Ras proteins are small GTPases that regulate cellular growth and differentiation. Components of the Ras signaling pathway have been shown to be important during embryonic vasculogenesis and angiogenesis. Here, we report that Rasip1, which encodes a novel Ras-interacting protein, is strongly expressed in vascular endothelial cells throughout development, in both mouse and frog. Similar to the well-characterized vascular markers VEGFR2 and PECAM, Rasip1 is specifically expressed in angioblasts prior to vessel formation, in the initial embryonic vascular plexus, in the growing blood vessels during angiogenesis and in the endothelium of mature blood vessels into the postnatal period. Rasip1 expression is undetectable in VEGFR2 null embryos, which lack endothelial cells, suggesting that Rasip1 is endothelial specific. siRNA-mediated reduction of Rasip1 severely impairs angiogenesis and motility in endothelial cell cultures, and morpholino knockdown experiments in frog embryos demonstrate that Rasip1 is required for embryonic vessel formation in vivo. Together, these data identify Rasip1 as a novel endothelial factor that plays an essential role in vascular development.  相似文献   

16.
Placental vasculogenesis consists of several stages, including appearance of hemangioblasts and angiogenic cell islands, setting up a primitive vascular network, and transition from vasculogenesis to sprouting and nonsprouting angiogenesis. In the present study, we hypothesized that placental vasculogenesis and angiogenesis require apoptosis during the formation of primitive vascular pattern, vessel elongation, and angiogenic branching. Vasculogenesis and apoptotic cells were identified using CD31 immunohistochemistry, hematoxylin-eosin (H-E) staining, CD31-TUNEL double-labeling, and transmission-electron microscopy (TEM). No TUNEL-positive cell was detected in angiogenic cell islands; however, several TUNEL-positive cells were observed during the primitive lumen formation. Interestingly, some of the stromal cells located between vasculogenic areas during the endothelial tube elongation and angiogenic branching also were TUNEL-positive. The presence of morphological aspects of apoptosis, such as nuclear shrinkage and nuclear bodies (apoptotic bodies), also was confirmed in H-E-stained and TEM-depicted sections. Quantitative analysis showed that higher ratios for apoptotic cells were found in the core stroma of villi among the vascular branching areas and in the primitive capillary lumen compared to angiogenic cell cords and vasculatures with advanced lumens (P < 0.05). In conclusion, our results suggest that apoptosis likely is involved in the physiologic mechanisms of placental vasculogenesis and angiogenesis, such as lumen formation and angiogenic branching.  相似文献   

17.

Background

One of the least understood and most central questions confronting biologists is how initially simple clusters or sheet-like cell collectives can assemble into highly complex three-dimensional functional tissues and organs. Due to the limits of oxygen diffusion, blood vessels are an essential and ubiquitous presence in all amniote tissues and organs. Vasculogenesis, the de novo self-assembly of endothelial cell (EC) precursors into endothelial tubes, is the first step in blood vessel formation [1]. Static imaging and in vitro models are wholly inadequate to capture many aspects of vascular pattern formation in vivo, because vasculogenesis involves dynamic changes of the endothelial cells and of the forming blood vessels, in an embryo that is changing size and shape.

Methodology/Principal Findings

We have generated Tie1 transgenic quail lines Tg(tie1:H2B-eYFP) that express H2B-eYFP in all of their endothelial cells which permit investigations into early embryonic vascular morphogenesis with unprecedented clarity and insight. By combining the power of molecular genetics with the elegance of dynamic imaging, we follow the precise patterning of endothelial cells in space and time. We show that during vasculogenesis within the vascular plexus, ECs move independently to form the rudiments of blood vessels, all while collectively moving with gastrulating tissues that flow toward the embryo midline. The aortae are a composite of somatic derived ECs forming its dorsal regions and the splanchnic derived ECs forming its ventral region. The ECs in the dorsal regions of the forming aortae exhibit variable mediolateral motions as they move rostrally; those in more ventral regions show significant lateral-to-medial movement as they course rostrally.

Conclusions/Significance

The present results offer a powerful approach to the major challenge of studying the relative role(s) of the mechanical, molecular, and cellular mechanisms of vascular development. In past studies, the advantages of the molecular genetic tools available in mouse were counterbalanced by the limited experimental accessibility needed for imaging and perturbation studies. Avian embryos provide the needed accessibility, but few genetic resources. The creation of transgenic quail with labeled endothelia builds upon the important roles that avian embryos have played in previous studies of vascular development.  相似文献   

18.
There is now accumulating evidence that bone marrow-derived mesenchymal stem cells (MSCs) make an important contribution to postnatal vasculogenesis, especially during tissue ischaemia and tumour vascularization. Identifying mechanisms which regulate the role of MSCs in vasculogenesis is a key therapeutic objective, since while increased neovascularization can be advantageous during tissue ischaemia, it is deleterious during tumourigenesis. The potent angiogenic stimulant vascular endothelial growth factor (VEGF) is known to regulate MSC mobilization and recruitment to sites of neovascularization, as well as directing the differentiation of MSCs to a vascular cell fate. Despite the fact that MSCs did not express VEGF receptors, we have recently identified that VEGF-A can stimulate platelet-derived growth factor (PDGF) receptors, which regulates MSC migration and proliferation. This review focuses on the role of PDGF receptors in regulating the vascular cell fate of MSCs, with emphasis on the function of the novel VEGF-A/PDGF receptor signalling mechanism.  相似文献   

19.
Abstract. Vascular endothelial growth factor (VEGF) is an important regulator of vasculogenesis, angiogenesis, and vascular permeability. In contrast to its transient expression during the formation of new blood vessels, VEGF and its receptors are continuously and highly expressed in some adult tissues, such as the kidney glomerulus and choroid plexus. This suggests that VEGF produced by the epithelial cells of these tissues might be involved in the induction or maintenance of fenestrations in adjacent endothelial cells expressing the VEGF receptors. Here we describe a defined in vitro culture system where fenestrae formation was induced in adrenal cortex capillary endothelial cells by VEGF, but not by fibroblast growth factor. A strong induction of endothelial fenestrations was observed in cocultures of endothelial cells with choroid plexus epithelial cells, or mammary epithelial cells stably transfected with cDNAs for VEGF 120 or 164, but not with untransfected cells. These results demonstrate that, in these cocultures, VEGF is sufficient to induce fenestrations in vitro. Identical results were achieved when the epithelial cells were replaced by an epithelial-derived basal lamina-type extracellular matrix, but not with collagen alone. In this defined system, VEGF-mediated induction of fenestrae was always accompanied by an increase in the number of fused diaphragmed caveolae-like vesicles. Caveolae, but not fenestrae, were labeled with a caveolin-1–specific antibody both in vivo and in vitro. VEGF stimulation led to VEGF receptor tyrosine phosphorylation, but no change in the distribution, phosphorylation, or protein level of caveolin-1 was observed. We conclude that VEGF in the presence of a basal lamina-type extracellular matrix specifically induces fenestrations in endothelial cells. This defined in vitro system will allow further study of the signaling mechanisms involved in fenestrae formation, modification of caveolae, and vascular permeability.  相似文献   

20.
心脏血管的形成   总被引:1,自引:0,他引:1  
心脏的血 管 形成 是 血管 发生 (vasculogenesis)、血 管 生成 (angiogenesis)及 动 脉生 成 (arteriogenesis)三种 机制 共同 作 用的 结 果 .血管 发 生是 指在 胚 胎期 ,来 源 于中 胚 层的 干细 胞增 殖 和分 化 ,形 成 内皮 细胞 ,进而 与其 他细 胞形 成 原始 的 心血 管系 统 .血 管生 成 出现 在血 管 发生 之后 ,是指 通过 内 皮细 胞的 增 殖由 原始 血 管丛 或已 存在 的血 管 形成 无 完好 血管 的 膜中 的毛 细 血管 .而 动 脉生 成是 指 具有 完好 的 动脉 中膜 的 小动 脉 的生 成,也包 括原 有的 侧 支循 环 的改 建及 成 熟 .总结 了 出生 前后 心 脏脉 管系 统 形成 的细 胞 及分 子机 理 ,并 从生 物 学及 临床 治疗 上就 一 些内 皮 前体 细胞 及 其它 脉管 起 源相 关问 题 进行 简单 的 介绍 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号